AbstractChronology
abstract class AbstractChronology : Chronology
kotlin.Any | |
↳ | java.time.chrono.AbstractChronology |
An abstract implementation of a calendar system, used to organize and identify dates.
The main date and time API is built on the ISO calendar system. The chronology operates behind the scenes to represent the general concept of a calendar system.
See Chronology
for more details.
Summary
Protected constructors | |
---|---|
Creates an instance. |
Public methods | |
---|---|
open Int |
compareTo(other: Chronology!) Compares this chronology to another chronology. |
open Boolean |
Checks if this chronology is equal to another chronology. |
open Int |
hashCode() A hash code for this chronology. |
open ChronoLocalDate! |
resolveDate(fieldValues: MutableMap<TemporalField!, Long!>!, resolverStyle: ResolverStyle!) Resolves parsed |
open String |
toString() Outputs this chronology as a |
Inherited functions | |
---|---|
Protected constructors
Public methods
compareTo
open fun compareTo(other: Chronology!): Int
Compares this chronology to another chronology.
The comparison order first by the chronology ID string, then by any additional information specific to the subclass. It is "consistent with equals", as defined by Comparable
.
Parameters | |
---|---|
o |
the object to be compared. |
other |
Chronology!: the other chronology to compare to, not null |
Return | |
---|---|
Int |
the comparator value, negative if less, positive if greater |
Exceptions | |
---|---|
java.lang.NullPointerException |
if the specified object is null |
java.lang.ClassCastException |
if the specified object's type prevents it from being compared to this object. |
equals
open fun equals(other: Any?): Boolean
Checks if this chronology is equal to another chronology.
The comparison is based on the entire state of the object.
Parameters | |
---|---|
obj |
the object to check, null returns false |
Return | |
---|---|
Boolean |
true if this is equal to the other chronology |
hashCode
open fun hashCode(): Int
A hash code for this chronology.
The hash code should be based on the entire state of the object.
Return | |
---|---|
Int |
a suitable hash code |
resolveDate
open fun resolveDate(
fieldValues: MutableMap<TemporalField!, Long!>!,
resolverStyle: ResolverStyle!
): ChronoLocalDate!
Resolves parsed ChronoField
values into a date during parsing.
Most TemporalField
implementations are resolved using the resolve method on the field. By contrast, the ChronoField
class defines fields that only have meaning relative to the chronology. As such, ChronoField
date fields are resolved here in the context of a specific chronology.
ChronoField
instances are resolved by this method, which may be overridden in subclasses.
EPOCH_DAY
- If present, this is converted to a date and all other date fields are then cross-checked against the date.PROLEPTIC_MONTH
- If present, then it is split into theYEAR
andMONTH_OF_YEAR
. If the mode is strict or smart then the field is validated.YEAR_OF_ERA
andERA
- If both are present, then they are combined to form aYEAR
. In lenient mode, theYEAR_OF_ERA
range is not validated, in smart and strict mode it is. TheERA
is validated for range in all three modes. If only theYEAR_OF_ERA
is present, and the mode is smart or lenient, then the last available era is assumed. In strict mode, no era is assumed and theYEAR_OF_ERA
is left untouched. If only theERA
is present, then it is left untouched.YEAR
,MONTH_OF_YEAR
andDAY_OF_MONTH
- If all three are present, then they are combined to form a date. In all three modes, theYEAR
is validated. If the mode is smart or strict, then the month and day are validated. If the mode is lenient, then the date is combined in a manner equivalent to creating a date on the first day of the first month in the requested year, then adding the difference in months, then the difference in days. If the mode is smart, and the day-of-month is greater than the maximum for the year-month, then the day-of-month is adjusted to the last day-of-month. If the mode is strict, then the three fields must form a valid date.YEAR
andDAY_OF_YEAR
- If both are present, then they are combined to form a date. In all three modes, theYEAR
is validated. If the mode is lenient, then the date is combined in a manner equivalent to creating a date on the first day of the requested year, then adding the difference in days. If the mode is smart or strict, then the two fields must form a valid date.YEAR
,MONTH_OF_YEAR
,ALIGNED_WEEK_OF_MONTH
andALIGNED_DAY_OF_WEEK_IN_MONTH
- If all four are present, then they are combined to form a date. In all three modes, theYEAR
is validated. If the mode is lenient, then the date is combined in a manner equivalent to creating a date on the first day of the first month in the requested year, then adding the difference in months, then the difference in weeks, then in days. If the mode is smart or strict, then the all four fields are validated to their outer ranges. The date is then combined in a manner equivalent to creating a date on the first day of the requested year and month, then adding the amount in weeks and days to reach their values. If the mode is strict, the date is additionally validated to check that the day and week adjustment did not change the month.YEAR
,MONTH_OF_YEAR
,ALIGNED_WEEK_OF_MONTH
andDAY_OF_WEEK
- If all four are present, then they are combined to form a date. The approach is the same as described above for years, months and weeks inALIGNED_DAY_OF_WEEK_IN_MONTH
. The day-of-week is adjusted as the next or same matching day-of-week once the years, months and weeks have been handled.YEAR
,ALIGNED_WEEK_OF_YEAR
andALIGNED_DAY_OF_WEEK_IN_YEAR
- If all three are present, then they are combined to form a date. In all three modes, theYEAR
is validated. If the mode is lenient, then the date is combined in a manner equivalent to creating a date on the first day of the requested year, then adding the difference in weeks, then in days. If the mode is smart or strict, then the all three fields are validated to their outer ranges. The date is then combined in a manner equivalent to creating a date on the first day of the requested year, then adding the amount in weeks and days to reach their values. If the mode is strict, the date is additionally validated to check that the day and week adjustment did not change the year.YEAR
,ALIGNED_WEEK_OF_YEAR
andDAY_OF_WEEK
- If all three are present, then they are combined to form a date. The approach is the same as described above for years and weeks inALIGNED_DAY_OF_WEEK_IN_YEAR
. The day-of-week is adjusted as the next or same matching day-of-week once the years and weeks have been handled.
The default implementation is suitable for most calendar systems. If java.time.temporal.ChronoField#YEAR_OF_ERA
is found without an java.time.temporal.ChronoField#ERA
then the last era in eras()
is used. The implementation assumes a 7 day week, that the first day-of-month has the value 1, that first day-of-year has the value 1, and that the first of the month and year always exists.
Parameters | |
---|---|
fieldValues |
MutableMap<TemporalField!, Long!>!: the map of fields to values, which can be updated, not null |
resolverStyle |
ResolverStyle!: the requested type of resolve, not null |
Return | |
---|---|
ChronoLocalDate! |
the resolved date, null if insufficient information to create a date |
Exceptions | |
---|---|
java.time.DateTimeException |
if the date cannot be resolved, typically because of a conflict in the input data |
toString
open fun toString(): String
Outputs this chronology as a String
, using the chronology ID.
Return | |
---|---|
String |
a string representation of this chronology, not null |