跳转到相应内容

最常访问

最近访问

navigation

Applying Projection and Camera Views

In the OpenGL ES environment, projection and camera views allow you to display drawn objects in a way that more closely resembles how you see physical objects with your eyes. This simulation of physical viewing is done with mathematical transformations of drawn object coordinates:

This lesson describes how to create a projection and camera view and apply it to shapes drawn in your GLSurfaceView.

Define a Projection

The data for a projection transformation is calculated in the onSurfaceChanged() method of your GLSurfaceView.Renderer class. The following example code takes the height and width of the GLSurfaceView and uses it to populate a projection transformation Matrix using the Matrix.frustumM() method:

// mMVPMatrix is an abbreviation for "Model View Projection Matrix"
private final float[] mMVPMatrix = new float[16];
private final float[] mProjectionMatrix = new float[16];
private final float[] mViewMatrix = new float[16];

@Override
public void onSurfaceChanged(GL10 unused, int width, int height) {
    GLES20.glViewport(0, 0, width, height);

    float ratio = (float) width / height;

    // this projection matrix is applied to object coordinates
    // in the onDrawFrame() method
    Matrix.frustumM(mProjectionMatrix, 0, -ratio, ratio, -1, 1, 3, 7);
}

This code populates a projection matrix, mProjectionMatrix which you can then combine with a camera view transformation in the onDrawFrame() method, which is shown in the next section.

Note: Just applying a projection transformation to your drawing objects typically results in a very empty display. In general, you must also apply a camera view transformation in order for anything to show up on screen.

Define a Camera View

Complete the process of transforming your drawn objects by adding a camera view transformation as part of the drawing process in your renderer. In the following example code, the camera view transformation is calculated using the Matrix.setLookAtM() method and then combined with the previously calculated projection matrix. The combined transformation matrices are then passed to the drawn shape.

@Override
public void onDrawFrame(GL10 unused) {
    ...
    // Set the camera position (View matrix)
    Matrix.setLookAtM(mViewMatrix, 0, 0, 0, -3, 0f, 0f, 0f, 0f, 1.0f, 0.0f);

    // Calculate the projection and view transformation
    Matrix.multiplyMM(mMVPMatrix, 0, mProjectionMatrix, 0, mViewMatrix, 0);

    // Draw shape
    mTriangle.draw(mMVPMatrix);
}

Apply Projection and Camera Transformations

In order to use the combined projection and camera view transformation matrix shown in the previews sections, first add a matrix variable to the vertex shader previously defined in the Triangle class:

public class Triangle {

    private final String vertexShaderCode =
        // This matrix member variable provides a hook to manipulate
        // the coordinates of the objects that use this vertex shader
        "uniform mat4 uMVPMatrix;" +
        "attribute vec4 vPosition;" +
        "void main() {" +
        // the matrix must be included as a modifier of gl_Position
        // Note that the uMVPMatrix factor *must be first* in order
        // for the matrix multiplication product to be correct.
        "  gl_Position = uMVPMatrix * vPosition;" +
        "}";

    // Use to access and set the view transformation
    private int mMVPMatrixHandle;

    ...
}

Next, modify the draw() method of your graphic objects to accept the combined transformation matrix and apply it to the shape:

public void draw(float[] mvpMatrix) { // pass in the calculated transformation matrix
    ...

    // get handle to shape's transformation matrix
    mMVPMatrixHandle = GLES20.glGetUniformLocation(mProgram, "uMVPMatrix");

    // Pass the projection and view transformation to the shader
    GLES20.glUniformMatrix4fv(mMVPMatrixHandle, 1, false, mvpMatrix, 0);

    // Draw the triangle
    GLES20.glDrawArrays(GLES20.GL_TRIANGLES, 0, vertexCount);

    // Disable vertex array
    GLES20.glDisableVertexAttribArray(mPositionHandle);
}

Once you have correctly calculated and applied the projection and camera view transformations, your graphic objects are drawn in correct proportions and should look like this:

Figure 1. Triangle drawn with a projection and camera view applied.

Now that you have an application that displays your shapes in correct proportions, it's time to add motion to your shapes.

此网站会使用 Cookie 来存储您在此网站上指定的语言和显示选项偏好设置。

获取最新的 Android Developers 资讯和提示,助您在 Google Play 上取得成功。

* 必填字段

成功!

在微信上关注 Google Developers

要以浏览此网站吗?

您请求访问的是网页,但是您为此网站设置的语言偏好为

要更改您的语言偏好设置并以浏览此网站吗?如果以后您想要更改语言偏好设置,请使用每个页面底部的语言菜单。

该类需要 或更高的 API 级别

此文档已被隐藏,因为您为该文档选择的 API 级别是 。您可以使用左侧导航栏上方的选择器来更改文档的 API 级别。

要详细了解如何根据您的应用需求指定 API 级别,请参阅支持不同平台版本

Take a short survey?
Help us improve the Android developer experience. (April 2018 — Developer Survey)