Debug your fragments

This guide covers tools that you can use to debug your fragments.

FragmentManager logging

FragmentManager is capable of emitting various messages to Logcat. This is disabled by default to avoid adding noise to Logcat, but sometimes these log messages can help you troubleshoot issues with your fragments. FragmentManager emits the most meaningful output at the Debug and Verbose log levels.

You can enable logging using the adb shell command:

adb shell setprop log.tag.FragmentManager DEBUG

Alternatively, you can enable verbose logging:

adb shell setprop log.tag.FragmentManager VERBOSE

If you enable verbose logging, you can then apply a log level filter in the Logcat window. However, this will filter all logs, not just the FragmentManager logs. It's usually best to enable FragmentManager logging only at the log level that you need.

DEBUG logging

At DEBUG level FragmentManager generally emits log messages relating to lifecycle state changes. Each log entry contains the toString() dump from the Fragment. A log entry consists of the following information:

  • The simple class name of the Fragment instance.
  • The identity hash code of the Fragment instance.
  • The FragmentManager’s unique ID of the Fragment instance. This is stable across configuration changes and process death and recreation.
  • The ID of the container that the Fragment was added to, but only if set.
  • The Fragment tag, but only if set.
D/FragmentManager: moveto ATTACHED: NavHostFragment{92d8f1d} (fd92599e-c349-4660-b2d6-0ece9ec72f7b id=0x7f080116)

You can identity the Fragment from the following:

  • The Fragment class is NavHostFragment.
  • The identity hash code is 92d8f1d.
  • The unique ID is fd92599e-c349-4660-b2d6-0ece9ec72f7b.
  • The container ID is 0x7f080116.
  • The tag is omitted because none was set. If it were present, it would follow the ID in the format tag=tag_value.

For brevity and readability, the UUIDs have been shortened in the following examples.

Here we see a NavHostFragment initialized and then the startDestination Fragment of type FirstFragment being created and transitioning through to RESUMED state:

D/FragmentManager: moveto ATTACHED: NavHostFragment{92d8f1d} (<UUID> id=0x7f080116)
D/FragmentManager:   mName=null mIndex=-1 mCommitted=false
D/FragmentManager:   Operations:
D/FragmentManager:     Op #0: SET_PRIMARY_NAV NavHostFragment{92d8f1d} (<UUID> id=0x7f080116)
D/FragmentManager: moveto CREATED: NavHostFragment{92d8f1d} (<UUID> id=0x7f080116)
D/FragmentManager:   mName=null mIndex=-1 mCommitted=false
D/FragmentManager:   Operations:
D/FragmentManager:     Op #0: REPLACE FirstFragment{ccd2189} (<UUID> id=0x7f080116)
D/FragmentManager:     Op #1: SET_PRIMARY_NAV FirstFragment{ccd2189} (<UUID> id=0x7f080116)
D/FragmentManager: moveto ATTACHED: FirstFragment{ccd2189} (<UUID> id=0x7f080116)
D/FragmentManager: moveto CREATED: FirstFragment{ccd2189} (<UUID> id=0x7f080116)
D/FragmentManager: moveto CREATE_VIEW: NavHostFragment{92d8f1d} (<UUID> id=0x7f080116)
D/FragmentManager: moveto CREATE_VIEW: FirstFragment{ccd2189} (<UUID> id=0x7f080116)
D/FragmentManager: moveto ACTIVITY_CREATED: NavHostFragment{92d8f1d} (<UUID> id=0x7f080116)
D/FragmentManager: moveto RESTORE_VIEW_STATE: NavHostFragment{92d8f1d} (<UUID> id=0x7f080116)
D/FragmentManager: moveto ACTIVITY_CREATED: FirstFragment{ccd2189} (<UUID> id=0x7f080116)
D/FragmentManager: moveto RESTORE_VIEW_STATE: FirstFragment{ccd2189} (<UUID> id=0x7f080116)
D/FragmentManager: moveto STARTED: NavHostFragment{92d8f1d} (<UUID> id=0x7f080116)
D/FragmentManager: moveto STARTED: FirstFragment{ccd2189} (<UUID> id=0x7f080116)
D/FragmentManager: moveto RESUMED: NavHostFragment{92d8f1d} (<UUID> id=0x7f080116)
D/FragmentManager: moveto RESUMED: FirstFragment{ccd2189} (<UUID> id=0x7f080116)

Following a user interaction, we see FirstFragment transition out of the various lifecycle states. Then SecondFragment is instantiated and transitions through to RESUMED state:

D/FragmentManager:   mName=07c8a5e8-54a3-4e21-b2cc-c8efc37c4cf5 mIndex=-1 mCommitted=false
D/FragmentManager:   Operations:
D/FragmentManager:     Op #0: REPLACE SecondFragment{84132db} (<UUID> id=0x7f080116)
D/FragmentManager:     Op #1: SET_PRIMARY_NAV SecondFragment{84132db} (<UUID> id=0x7f080116)
D/FragmentManager: movefrom RESUMED: FirstFragment{ccd2189} (<UUID> id=0x7f080116)
D/FragmentManager: movefrom STARTED: FirstFragment{ccd2189} (<UUID> id=0x7f080116)
D/FragmentManager: movefrom ACTIVITY_CREATED: FirstFragment{ccd2189} (<UUID> id=0x7f080116)
D/FragmentManager: moveto ATTACHED: SecondFragment{84132db} (<UUID> id=0x7f080116)
D/FragmentManager: moveto CREATED: SecondFragment{84132db} (<UUID> id=0x7f080116)
D/FragmentManager: moveto CREATE_VIEW: SecondFragment{84132db} (<UUID> id=0x7f080116)
D/FragmentManager: moveto ACTIVITY_CREATED: SecondFragment{84132db} (<UUID> id=0x7f080116)
D/FragmentManager: moveto RESTORE_VIEW_STATE: SecondFragment{84132db} (<UUID> id=0x7f080116)
D/FragmentManager: moveto STARTED: SecondFragment{84132db} (<UUID> id=0x7f080116)
D/FragmentManager: movefrom CREATE_VIEW: FirstFragment{ccd2189} (<UUID> id=0x7f080116)
D/FragmentManager: moveto RESUMED: SecondFragment{84132db} (<UUID> id=0x7f080116)

All the Fragment instances are suffixed by an identifier so that you can track different instances of the same Fragment class.

VERBOSE logging

At VERBOSE level, FragmentManager generally emits log messages about its internal state:

V/FragmentManager: Run: BackStackEntry{f9d3ff3}
V/FragmentManager: add: NavHostFragment{86274b0} (<UUID> id=0x7f080130)
V/FragmentManager: Added fragment to active set NavHostFragment{86274b0} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 1 for NavHostFragment{86274b0} (<UUID> id=0x7f080130)
D/FragmentManager: moveto ATTACHED: NavHostFragment{86274b0} (<UUID> id=0x7f080130)
V/FragmentManager: Commit: BackStackEntry{5cfd2ae}
D/FragmentManager:   mName=null mIndex=-1 mCommitted=false
D/FragmentManager:   Operations:
D/FragmentManager:     Op #0: SET_PRIMARY_NAV NavHostFragment{86274b0} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 1 for NavHostFragment{86274b0} (<UUID> id=0x7f080130)
D/FragmentManager: moveto CREATED: NavHostFragment{86274b0} (<UUID> id=0x7f080130)
V/FragmentManager: Commit: BackStackEntry{e93833f}
D/FragmentManager:   mName=null mIndex=-1 mCommitted=false
D/FragmentManager:   Operations:
D/FragmentManager:     Op #0: REPLACE FirstFragment{886440c} (<UUID> id=0x7f080130)
D/FragmentManager:     Op #1: SET_PRIMARY_NAV FirstFragment{886440c} (<UUID> id=0x7f080130)
V/FragmentManager: Run: BackStackEntry{e93833f}
V/FragmentManager: add: FirstFragment{886440c} (<UUID> id=0x7f080130)
V/FragmentManager: Added fragment to active set FirstFragment{886440c} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 1 for FirstFragment{886440c} (<UUID> id=0x7f080130)
D/FragmentManager: moveto ATTACHED: FirstFragment{886440c} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 1 for FirstFragment{886440c} (<UUID> id=0x7f080130)
D/FragmentManager: moveto CREATED: FirstFragment{886440c} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 1 for FirstFragment{886440c} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 1 for FirstFragment{886440c} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 1 for FirstFragment{886440c} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 1 for FirstFragment{886440c} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 1 for NavHostFragment{86274b0} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 1 for NavHostFragment{86274b0} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 1 for NavHostFragment{86274b0} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 4 for NavHostFragment{86274b0} (<UUID> id=0x7f080130)
D/FragmentManager: moveto CREATE_VIEW: NavHostFragment{86274b0} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 2 for FirstFragment{886440c} (<UUID> id=0x7f080130)
D/FragmentManager: moveto CREATE_VIEW: FirstFragment{886440c} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 2 for FirstFragment{886440c} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 2 for FirstFragment{886440c} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 4 for NavHostFragment{86274b0} (<UUID> id=0x7f080130)
D/FragmentManager: moveto ACTIVITY_CREATED: NavHostFragment{86274b0} (<UUID> id=0x7f080130)
D/FragmentManager: moveto RESTORE_VIEW_STATE: NavHostFragment{86274b0} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 4 for FirstFragment{886440c} (<UUID> id=0x7f080130)
D/FragmentManager: moveto ACTIVITY_CREATED: FirstFragment{886440c} (<UUID> id=0x7f080130)
D/FragmentManager: moveto RESTORE_VIEW_STATE: FirstFragment{886440c} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 4 for FirstFragment{886440c} (<UUID> id=0x7f080130)
V/FragmentManager: SpecialEffectsController: Enqueuing add operation for fragment FirstFragment{886440c} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 4 for FirstFragment{886440c} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 4 for FirstFragment{886440c} (<UUID> id=0x7f080130)
V/FragmentManager: SpecialEffectsController: For fragment FirstFragment{886440c} (<UUID> id=0x7f080130) mFinalState = VISIBLE -> VISIBLE.
V/FragmentManager: SpecialEffectsController: Container androidx.fragment.app.FragmentContainerView{7578ffa V.E...... ......I. 0,0-0,0 #7f080130 app:id/nav_host_fragment_content_fragment} is not attached to window. Cancelling pending operation Operation {382a9ab} {mFinalState = VISIBLE} {mLifecycleImpact = ADDING} {mFragment = FirstFragment{886440c} (<UUID> id=0x7f080130)}
V/FragmentManager: SpecialEffectsController: Operation {382a9ab} {mFinalState = VISIBLE} {mLifecycleImpact = ADDING} {mFragment = FirstFragment{886440c} (<UUID> id=0x7f080130)} has called complete.
V/FragmentManager: SpecialEffectsController: Setting view androidx.constraintlayout.widget.ConstraintLayout{3968808 I.E...... ......I. 0,0-0,0} to VISIBLE
V/FragmentManager: computeExpectedState() of 4 for FirstFragment{886440c} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 4 for NavHostFragment{86274b0} (<UUID> id=0x7f080130)
V/FragmentManager: SpecialEffectsController: Enqueuing add operation for fragment NavHostFragment{86274b0} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 4 for NavHostFragment{86274b0} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 4 for NavHostFragment{86274b0} (<UUID> id=0x7f080130)
V/FragmentManager: SpecialEffectsController: For fragment NavHostFragment{86274b0} (<UUID> id=0x7f080130) mFinalState = VISIBLE -> VISIBLE. 
V/FragmentManager: SpecialEffectsController: Container androidx.fragment.app.FragmentContainerView{2ba8ba1 V.E...... ......I. 0,0-0,0 #7f080130 app:id/nav_host_fragment_content_fragment} is not attached to window. Cancelling pending operation Operation {f7eb1c6} {mFinalState = VISIBLE} {mLifecycleImpact = ADDING} {mFragment = NavHostFragment{86274b0} (<UUID> id=0x7f080130)}
V/FragmentManager: SpecialEffectsController: Operation {f7eb1c6} {mFinalState = VISIBLE} {mLifecycleImpact = ADDING} {mFragment = NavHostFragment{86274b0} (<UUID> id=0x7f080130)} has called complete.
V/FragmentManager: SpecialEffectsController: Setting view androidx.fragment.app.FragmentContainerView{7578ffa I.E...... ......I. 0,0-0,0 #7f080130 app:id/nav_host_fragment_content_fragment} to VISIBLE
V/FragmentManager: computeExpectedState() of 4 for NavHostFragment{86274b0} (<UUID> id=0x7f080130)
V/FragmentManager: Run: BackStackEntry{5cfd2ae}
V/FragmentManager: computeExpectedState() of 4 for NavHostFragment{86274b0} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 4 for NavHostFragment{86274b0} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 4 for NavHostFragment{86274b0} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 5 for NavHostFragment{86274b0} (<UUID> id=0x7f080130)
D/FragmentManager: moveto STARTED: NavHostFragment{86274b0} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 5 for FirstFragment{886440c} (<UUID> id=0x7f080130)
D/FragmentManager: moveto STARTED: FirstFragment{886440c} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 5 for FirstFragment{886440c} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 5 for FirstFragment{886440c} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 5 for NavHostFragment{86274b0} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 5 for NavHostFragment{86274b0} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 7 for NavHostFragment{86274b0} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 7 for NavHostFragment{86274b0} (<UUID> id=0x7f080130)
D/FragmentManager: moveto RESUMED: NavHostFragment{86274b0} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 7 for FirstFragment{886440c} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 7 for FirstFragment{886440c} (<UUID> id=0x7f080130)
D/FragmentManager: moveto RESUMED: FirstFragment{886440c} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 7 for FirstFragment{886440c} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 7 for FirstFragment{886440c} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 7 for NavHostFragment{86274b0} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 7 for NavHostFragment{86274b0} (<UUID> id=0x7f080130)

This only covers the loading on FirstFragment. Including the transition to SecondFragment would have increased the log entries considerably. Much of the VERBOSE level log messages will be of little to no use to app developers. However, seeing when changes to the back stack occur may help in debugging some issues.

StrictMode for fragments

Version 1.4.0-alpha01 of the Jetpack Fragment library introduced StrictMode for fragments. It can catch some common issues which may cause your app to behave in unexpected ways.

By default, Fragment StrictMode has a LAX policy that catches nothing. However, it is possible to create custom policies. A custom Policy defines which violations are detected and specifies what penalty is applied when violations are detected.

To apply a custom StrictMode policy, assign it to the FragmentManager. You should do this as early as possible. In this case, you do it in an init block or in the Java constructor:

Kotlin

class ExampleActivity : AppCompatActivity() {

    init {
        supportFragmentManager.strictModePolicy =
            FragmentStrictMode.Policy.Builder()
                .penaltyDeath()
                .detectFragmentReuse()
                .allowViolation(FirstFragment::class.java,
                                FragmentReuseViolation::class.java)
                .build()
    }

    override fun onCreate(savedInstanceState: Bundle?) {
        super.onCreate(savedInstanceState)

        val binding = ActivityExampleBinding.inflate(layoutInflater)
        setContentView(binding.root)
        ...
   }
}

Java

class ExampleActivity extends AppCompatActivity() {

    ExampleActivity() {
        getSupportFragmentManager().setStrictModePolicy(
                new FragmentStrictMode.Policy.Builder()
                        .penaltyDeath()
                        .detectFragmentReuse()
                        .allowViolation(FirstFragment.class,
                                        FragmentReuseViolation.class)
                        .build()
        );
    }

    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState)

        ActivityExampleBinding binding =
            ActivityExampleBinding.inflate(getLayoutInflater());
        setContentView(binding.getRoot());
        ...
   }
}

For cases where you need to know the Context to determine whether or not to enable strict mode (for example, from the value of a boolean resource), you can defer assigning a StrictMode policy to the FragmentManager using an OnContextAvailableListener:

Kotlin

class ExampleActivity : AppCompatActivity() {

    init {
        addOnContextAvailableListener { context ->
            if(context.resources.getBoolean(R.bool.enable_strict_mode)) {
                supportFragmentManager.strictModePolicy = FragmentStrictMode.Policy.Builder()
                    .penaltyDeath()
                    .detectFragmentReuse()
                    .allowViolation(FirstFragment::class.java, FragmentReuseViolation::class.java)
                    .build()
            }
        }
    }

    override fun onCreate(savedInstanceState: Bundle?) {
        super.onCreate(savedInstanceState)

        val binding = ActivityExampleBinding.inflate(layoutInflater)
        setContentView(binding.root)
        ...
   }
}

Java

class ExampleActivity extends AppCompatActivity() {

    ExampleActivity() {
        addOnContextAvailableListener((context) -> {
            if(context.getResources().getBoolean(R.bool.enable_strict_mode)) {
                getSupportFragmentManager().setStrictModePolicy(
                        new FragmentStrictMode.Policy.Builder()
                                .penaltyDeath()
                                .detectFragmentReuse()
                                .allowViolation(FirstFragment.class, FragmentReuseViolation.class)
                                .build()
                );
            }
        }
    }

    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState)

        ActivityExampleBinding binding = ActivityExampleBinding.inflate(getLayoutInflater());
        setContentView(binding.getRoot());
        ...
   }
}

The latest point at which you should configure strict mode to catch all possible violations is in onCreate(), but here you must configure strict mode before the call to super.onCreate():

Kotlin

class ExampleActivity : AppCompatActivity() {

    override fun onCreate(savedInstanceState: Bundle?) {
        supportFragmentManager.strictModePolicy = FragmentStrictMode.Policy.Builder()
            .penaltyDeath()
            .detectFragmentReuse()
            .allowViolation(FirstFragment::class.java, FragmentReuseViolation::class.java)
            .build()

        super.onCreate(savedInstanceState)

        val binding = ActivityExampleBinding.inflate(layoutInflater)
        setContentView(binding.root)
        ...
   }
}

Java

class ExampleActivity extends AppCompatActivity() {

    @Override
    protected void onCreate(Bundle savedInstanceState) {
        getSupportFragmentManager().setStrictModePolicy(
                new FragmentStrictMode.Policy.Builder()
                        .penaltyDeath()
                        .detectFragmentReuse()
                        .allowViolation(FirstFragment.class, FragmentReuseViolation.class)
                        .build()
                );

        super.onCreate(savedInstanceState)

        ActivityExampleBinding binding = ActivityExampleBinding.inflate(getLayoutInflater());
        setContentView(binding.getRoot());
        ...
   }
}

This policy used in these examples detects only fragment reuse violations, and the app terminates whenever one occurs. penaltyDeath() can be helpful in debug builds because it fails quickly enough that you cannot ignore violations.

It is also possible to selectively allow certain violations. In the example, However, this policy enforces this violation for all other fragment types. This is useful for cases where a third-party library component might contain StrictMode violations. In such cases, you can temporarily add those violations to the allow list of your StrictMode for components that you don’t own until the library fixes their violation.

See the documentation for FragmentStrictMode.Policy.Builder for details on how to configure other violations.

There are three penalty types.

  • penaltyLog() dumps details of violations to LogCat
  • penaltyDeath() terminates the app when violations are detected.
  • penaltyListener() allows you to add a custom listener, which gets called whenever violations are detected.

You can apply any combination of penalties in your Policy. If your policy does not explicitly specify a penalty, a default of penaltyLog() is applied. If you apply a penalty other than penaltyLog() in your custom Policy, then penaltyLog() will be disabled unless you explicitly set it.

penaltyListener() can be useful when you have a third-party logging library to which you want to log violations. Alternatively, you might want to enable non-fatal violation catching in release builds and log them to a crash reporting library. This strategy can detect violations in the wild.

Setting a global StrictMode policy is best done by setting a default policy that applies to all FragmentManager instances via the FragmentStrictMode.setDefaultPolicy() method:

Kotlin

class MyApplication : Application() {

    override fun onCreate() {
        super.onCreate()

        FragmentStrictMode.defaultPolicy =
            FragmentStrictMode.Policy.Builder()
                .detectFragmentReuse()
                .detectFragmentTagUsage()
                .detectRetainInstanceUsage()
                .detectSetUserVisibleHint()
                .detectTargetFragmentUsage()
                .detectWrongFragmentContainer()
                .apply {
                    if (BuildConfig.DEBUG) {
                        // Fail early on DEBUG builds
                        penaltyDeath()
                    } else {
                        // Log to Crashlytics on RELEASE builds
                        penaltyListener {
                            FirebaseCrashlytics.getInstance().recordException(it)
                        }
                    }
                }
                .build()
    }
}

Java

public class MyApplication extends Application {

    @Override
    public void onCreate() {
        super.onCreate();

        FragmentStrictMode.Policy.Builder builder = new FragmentStrictMode.Policy.Builder();
        builder.detectFragmentReuse()
                .detectFragmentTagUsage()
                .detectRetainInstanceUsage()
                .detectSetUserVisibleHint()
                .detectTargetFragmentUsage()
                .detectWrongFragmentContainer();
        if (BuildConfig.DEBUG) {
            // Fail early on DEBUG builds
            builder.penaltyDeath();
        } else {
            // Log to Crashlytics on RELEASE builds
            builder.penaltyListener((exception) ->
                    FirebaseCrashlytics.getInstance().recordException(exception)
            );
        }
        FragmentStrictMode.setDefaultPolicy(builder.build());
    }
}

The following sections describe types of violations and possible workarounds.

Fragment reuse

The fragment reuse violation is enabled using detectFragmentReuse() and throws a FragmentReuseViolation.

This violation indicates the reuse of a Fragment instance after its removal from FragmentManager. This reuse can cause issues because the Fragment may retain state from its previous use and not behave consistently. If you create a new instance each time, it will always be in the initial state when added to FragmentManager.

Fragment tag usage

The fragment tag usage violation is enabled using detectFragmentTagUsage() and throws a FragmentTagUsageViolation.

This violation indicates that a Fragment was inflated using the <fragment> tag in an XML layout. To resolve this, inflate your Fragment inside <androidx.fragment.app.FragmentContainerView> rather than in the <fragment> tag. Fragments inflated using a FragmentContainerView can reliably handle Fragment transactions and configuration changes. These may not work as expected if you use the <fragment> tag instead.

Retain instance usage

The retain instance usage violation is enabled using detectRetainInstanceUsage() and throws a RetainInstanceUsageViolation.

This violation indicates the usage of a retained Fragment. Specifically, if there are calls to setRetainInstance() or getRetainInstance() which are both deprecated.

Instead of using these methods to manage retained Fragment instances yourself, you should store state in a ViewModel that will handle this for you.

Set user visible hint

The set user visible hint violation is enabled using detectSetUserVisibleHint() and throws a SetUserVisibleHintViolation.

This violation indicates a call to setUserVisibleHint(), which is deprecated.

If you are manually calling this method, then you should call setMaxLifecycle() instead. If you override this method, you should move the behavior to onResume() when passing in true and onPause() when passing in false.

Target fragment usage

The target fragment usage violation is enabled using detectTargetFragmentUsage() and throws a TargetFragmentUsageViolation.

This violation indicates a call to setTargetFragment(), getTargetFragment(), or getTargetRequestCode(), which are all deprecated. Instead of using these methods you should register a FragmentResultListener. For more information, see Pass results between fragments.

Wrong fragment container

The wrong fragment container violation is enabled using detectWrongFragmentContainer() and throws a WrongFragmentContainerViolation.

This violation indicates the addition of a Fragment to a container other than FragmentContainerView. As with Fragment tag usage, Fragment Transactions may not work as expected unless hosted inside a FragmentContainerView. It also helps address an issue in the View API that causes fragments using exit animations to be drawn on top of all other fragments.