DataStore   Part of Android Jetpack.

Jetpack DataStore is a data storage solution that allows you to store key-value pairs or typed objects with protocol buffers. DataStore uses Kotlin coroutines and Flow to store data asynchronously, consistently, and transactionally.

If you're currently using SharedPreferences to store data, consider migrating to DataStore instead.

Preferences DataStore and Proto DataStore

DataStore provides two different implementations: Preferences DataStore and Proto DataStore.

  • Preferences DataStore stores and accesses data using keys. This implementation does not require a predefined schema, and it does not provide type safety.
  • Proto DataStore stores data as instances of a custom data type. This implementation requires you to define a schema using protocol buffers, but it provides type safety.

Using DataStore correctly

In order to use DataStore correctly always keep in mind the following rules:

  1. Never create more than one instance of DataStore for a given file in the same process. Doing so can break all DataStore functionality. If there are multiple DataStores active for a given file in the same process, DataStore will throw IllegalStateException when reading or updating data.

  2. The generic type of the DataStore must be immutable. Mutating a type used in DataStore invalidates any guarantees that DataStore provides and creates potentially serious, hard-to-catch bugs. It is strongly recommended that you use protocol buffers which provide immutability guarantees, a simple API, and efficient serialization.

  3. Never mix usages of SingleProcessDataStore and MultiProcessDataStore for the same file. If you intend to access the DataStore from more than one process, always use MultiProcessDataStore.

Setup

To use Jetpack DataStore in your app, add the following to your Gradle file depending on which implementation you want to use:

Preferences DataStore

Groovy

    // Preferences DataStore (SharedPreferences like APIs)
    dependencies {
        implementation "androidx.datastore:datastore-preferences:1.1.2"

        // optional - RxJava2 support
        implementation "androidx.datastore:datastore-preferences-rxjava2:1.1.2"

        // optional - RxJava3 support
        implementation "androidx.datastore:datastore-preferences-rxjava3:1.1.2"
    }

    // Alternatively - use the following artifact without an Android dependency.
    dependencies {
        implementation "androidx.datastore:datastore-preferences-core:1.1.2"
    }
    

Kotlin

    // Preferences DataStore (SharedPreferences like APIs)
    dependencies {
        implementation("androidx.datastore:datastore-preferences:1.1.2")

        // optional - RxJava2 support
        implementation("androidx.datastore:datastore-preferences-rxjava2:1.1.2")

        // optional - RxJava3 support
        implementation("androidx.datastore:datastore-preferences-rxjava3:1.1.2")
    }

    // Alternatively - use the following artifact without an Android dependency.
    dependencies {
        implementation("androidx.datastore:datastore-preferences-core:1.1.2")
    }
    

Proto DataStore

Groovy

    // Typed DataStore (Typed API surface, such as Proto)
    dependencies {
        implementation "androidx.datastore:datastore:1.1.2"

        // optional - RxJava2 support
        implementation "androidx.datastore:datastore-rxjava2:1.1.2"

        // optional - RxJava3 support
        implementation "androidx.datastore:datastore-rxjava3:1.1.2"
    }

    // Alternatively - use the following artifact without an Android dependency.
    dependencies {
        implementation "androidx.datastore:datastore-core:1.1.2"
    }
    

Kotlin

    // Typed DataStore (Typed API surface, such as Proto)
    dependencies {
        implementation("androidx.datastore:datastore:1.1.2")

        // optional - RxJava2 support
        implementation("androidx.datastore:datastore-rxjava2:1.1.2")

        // optional - RxJava3 support
        implementation("androidx.datastore:datastore-rxjava3:1.1.2")
    }

    // Alternatively - use the following artifact without an Android dependency.
    dependencies {
        implementation("androidx.datastore:datastore-core:1.1.2")
    }
    

Store key-value pairs with Preferences DataStore

The Preferences DataStore implementation uses the DataStore and Preferences classes to persist simple key-value pairs to disk.

Create a Preferences DataStore

Use the property delegate created by preferencesDataStore to create an instance of DataStore<Preferences>. Call it once at the top level of your kotlin file, and access it through this property throughout the rest of your application. This makes it easier to keep your DataStore as a singleton. Alternatively, use RxPreferenceDataStoreBuilder if you're using RxJava. The mandatory name parameter is the name of the Preferences DataStore.

Kotlin

// At the top level of your kotlin file:
val Context.dataStore: DataStore<Preferences> by preferencesDataStore(name = "settings")

Java

RxDataStore<Preferences> dataStore =
  new RxPreferenceDataStoreBuilder(context, /*name=*/ "settings").build();

Read from a Preferences DataStore

Because Preferences DataStore does not use a predefined schema, you must use the corresponding key type function to define a key for each value that you need to store in the DataStore<Preferences> instance. For example, to define a key for an int value, use intPreferencesKey(). Then, use the DataStore.data property to expose the appropriate stored value using a Flow.

Kotlin

val EXAMPLE_COUNTER = intPreferencesKey("example_counter")
val exampleCounterFlow: Flow<Int> = context.dataStore.data
  .map { preferences ->
    // No type safety.
    preferences[EXAMPLE_COUNTER] ?: 0
}

Java

Preferences.Key<Integer> EXAMPLE_COUNTER = PreferencesKeys.int("example_counter");

Flowable<Integer> exampleCounterFlow =
  dataStore.data().map(prefs -> prefs.get(EXAMPLE_COUNTER));

Write to a Preferences DataStore

Preferences DataStore provides an edit() function that transactionally updates the data in a DataStore. The function's transform parameter accepts a block of code where you can update the values as needed. All of the code in the transform block is treated as a single transaction.

Kotlin

suspend fun incrementCounter() {
  context.dataStore.edit { settings ->
    val currentCounterValue = settings[EXAMPLE_COUNTER] ?: 0
    settings[EXAMPLE_COUNTER] = currentCounterValue + 1
  }
}

Java

Single<Preferences> updateResult =  dataStore.updateDataAsync(prefsIn -> {
  MutablePreferences mutablePreferences = prefsIn.toMutablePreferences();
  Integer currentInt = prefsIn.get(INTEGER_KEY);
  mutablePreferences.set(INTEGER_KEY, currentInt != null ? currentInt + 1 : 1);
  return Single.just(mutablePreferences);
});
// The update is completed once updateResult is completed.

Store typed objects with Proto DataStore

The Proto DataStore implementation uses DataStore and protocol buffers to persist typed objects to disk.

Define a schema

Proto DataStore requires a predefined schema in a proto file in the app/src/main/proto/ directory. This schema defines the type for the objects that you persist in your Proto DataStore. To learn more about defining a proto schema, see the protobuf language guide.

syntax = "proto3";

option java_package = "com.example.application.proto";
option java_multiple_files = true;

message Settings {
  int32 example_counter = 1;
}

Create a Proto DataStore

There are two steps involved in creating a Proto DataStore to store your typed objects:

  1. Define a class that implements Serializer<T>, where T is the type defined in the proto file. This serializer class tells DataStore how to read and write your data type. Make sure you include a default value for the serializer to be used if there is no file created yet.
  2. Use the property delegate created by dataStore to create an instance of DataStore<T>, where T is the type defined in the proto file. Call this once at the top level of your kotlin file and access it through this property delegate throughout the rest of your app. The filename parameter tells DataStore which file to use to store the data, and the serializer parameter tells DataStore the name of the serializer class defined in step 1.

Kotlin

object SettingsSerializer : Serializer<Settings> {
  override val defaultValue: Settings = Settings.getDefaultInstance()

  override suspend fun readFrom(input: InputStream): Settings {
    try {
      return Settings.parseFrom(input)
    } catch (exception: InvalidProtocolBufferException) {
      throw CorruptionException("Cannot read proto.", exception)
    }
  }

  override suspend fun writeTo(
    t: Settings,
    output: OutputStream) = t.writeTo(output)
}

val Context.settingsDataStore: DataStore<Settings> by dataStore(
  fileName = "settings.pb",
  serializer = SettingsSerializer
)

Java

private static class SettingsSerializer implements Serializer<Settings> {
  @Override
  public Settings getDefaultValue() {
    Settings.getDefaultInstance();
  }

  @Override
  public Settings readFrom(@NotNull InputStream input) {
    try {
      return Settings.parseFrom(input);
    } catch (exception: InvalidProtocolBufferException) {
      throw CorruptionException(Cannot read proto., exception);
    }
  }

  @Override
  public void writeTo(Settings t, @NotNull OutputStream output) {
    t.writeTo(output);
  }
}

RxDataStore<Byte> dataStore =
    new RxDataStoreBuilder<Byte>(context, /* fileName= */ "settings.pb", new SettingsSerializer()).build();

Read from a Proto DataStore

Use DataStore.data to expose a Flow of the appropriate property from your stored object.

Kotlin

val exampleCounterFlow: Flow<Int> = context.settingsDataStore.data
  .map { settings ->
    // The exampleCounter property is generated from the proto schema.
    settings.exampleCounter
  }

Java

Flowable<Integer> exampleCounterFlow =
  dataStore.data().map(settings -> settings.getExampleCounter());

Write to a Proto DataStore

Proto DataStore provides an updateData() function that transactionally updates a stored object. updateData() gives you the current state of the data as an instance of your data type and updates the data transactionally in an atomic read-write-modify operation.

Kotlin

suspend fun incrementCounter() {
  context.settingsDataStore.updateData { currentSettings ->
    currentSettings.toBuilder()
      .setExampleCounter(currentSettings.exampleCounter + 1)
      .build()
    }
}

Java

Single<Settings> updateResult =
  dataStore.updateDataAsync(currentSettings ->
    Single.just(
      currentSettings.toBuilder()
        .setExampleCounter(currentSettings.getExampleCounter() + 1)
        .build()));

Use DataStore in synchronous code

One of the primary benefits of DataStore is the asynchronous API, but it may not always be feasible to change your surrounding code to be asynchronous. This might be the case if you're working with an existing codebase that uses synchronous disk I/O or if you have a dependency that doesn't provide an asynchronous API.

Kotlin coroutines provide the runBlocking() coroutine builder to help bridge the gap between synchronous and asynchronous code. You can use runBlocking() to read data from DataStore synchronously. RxJava offers blocking methods on Flowable. The following code blocks the calling thread until DataStore returns data:

Kotlin

val exampleData = runBlocking { context.dataStore.data.first() }

Java

Settings settings = dataStore.data().blockingFirst();

Performing synchronous I/O operations on the UI thread can cause ANRs or UI jank. You can mitigate these issues by asynchronously preloading the data from DataStore:

Kotlin

override fun onCreate(savedInstanceState: Bundle?) {
    lifecycleScope.launch {
        context.dataStore.data.first()
        // You should also handle IOExceptions here.
    }
}

Java

dataStore.data().first().subscribe();

This way, DataStore asynchronously reads the data and caches it in memory. Later synchronous reads using runBlocking() may be faster or may avoid a disk I/O operation altogether if the initial read has completed.

Use DataStore in multi-process code

You can configure DataStore to access the same data across different processes with the same data consistency guarantees as from within a single process. In particular, DataStore guarantees:

  • Reads only return the data that has been persisted to disk.
  • Read-after-write consistency.
  • Writes are serialized.
  • Reads are never blocked by writes.

Consider a sample application with a service and an activity:

  1. The service is running in a separate process and periodically updates the DataStore

    <service
      android:name=".MyService"
      android:process=":my_process_id" />
    
    override fun onStartCommand(intent: Intent?, flags: Int, startId: Int): Int {
          scope.launch {
              while(isActive) {
                  dataStore.updateData {
                      Settings(lastUpdate = System.currentTimeMillis())
                  }
                  delay(1000)
              }
          }
    }
    
  2. While the app would collect those changes and update its UI

    val settings: Settings by dataStore.data.collectAsState()
    Text(
      text = "Last updated: $${settings.timestamp}",
    )
    

To be able to use DataStore across different processes, you need to construct the DataStore object using the MultiProcessDataStoreFactory.

val dataStore: DataStore<Settings> = MultiProcessDataStoreFactory.create(
   serializer = SettingsSerializer(),
   produceFile = {
       File("${context.cacheDir.path}/myapp.preferences_pb")
   }
)

serializer tells DataStore how to read and write your data type. Make sure you include a default value for the serializer to be used if there is no file created yet. Below is an example implementation using kotlinx.serialization:

@Serializable
data class Settings(
   val lastUpdate: Long
)

@Singleton
class SettingsSerializer @Inject constructor() : Serializer<Settings> {

   override val defaultValue = Settings(lastUpdate = 0)

   override suspend fun readFrom(input: InputStream): Settings =
       try {
           Json.decodeFromString(
               Settings.serializer(), input.readBytes().decodeToString()
           )
       } catch (serialization: SerializationException) {
           throw CorruptionException("Unable to read Settings", serialization)
       }

   override suspend fun writeTo(t: Settings, output: OutputStream) {
       output.write(
           Json.encodeToString(Settings.serializer(), t)
               .encodeToByteArray()
       )
   }
}

You can use Hilt dependency injection to make sure that your DataStore instance is unique per process:

@Provides
@Singleton
fun provideDataStore(@ApplicationContext context: Context): DataStore<Settings> =
   MultiProcessDataStoreFactory.create(...)

Handle file corruption

There are rare occasions where DataStore's persistent on-disk file could get corrupted. By default, DataStore doesn't automatically recover from corruption, and attempts to read from it will cause the system to throw a CorruptionException.

DataStore offers a corruption handler API that can help you recover gracefully in such a scenario, and avoid throwing the exception. When configured, the corruption handler replaces the corrupted file with a new one containing a pre-defined default value.

To set up this handler, provide a corruptionHandler when creating the DataStore instance in by dataStore() or in the DataStoreFactory factory method:

val dataStore: DataStore<Settings> = DataStoreFactory.create(
   serializer = SettingsSerializer(),
   produceFile = {
       File("${context.cacheDir.path}/myapp.preferences_pb")
   },
   corruptionHandler = ReplaceFileCorruptionHandler { Settings(lastUpdate = 0) }
)

Provide feedback

Share your feedback and ideas with us through these resources:

Issue tracker
Report issues so we can fix bugs.

Additional resources

To learn more about Jetpack DataStore, see the following additional resources:

Samples

Blogs

Codelabs