Definisci le forme
Mantieni tutto organizzato con le raccolte
Salva e classifica i contenuti in base alle tue preferenze.
La prima cosa da fare è poter definire le forme da tracciare nel contesto di una visualizzazione OpenGL ES
creando grafiche di fascia alta per la tua app. Disegnare con OpenGL ES può essere un po' complicato senza
sapendo alcune cose di base su come OpenGL ES si aspetta di definire oggetti grafici.
Questa lezione illustra il sistema di coordinate OpenGL ES relativo allo schermo di un dispositivo Android,
nozioni di base per la definizione di una forma e delle facce, nonché per la definizione di triangolo e quadrato.
Definisci un triangolo
OpenGL ES consente di definire gli oggetti disegnati utilizzando le coordinate nello spazio tridimensionale. Quindi,
prima di poter disegnare un triangolo, occorre definirne le coordinate. In OpenGL, il modo tipico
questo serve a definire un array di vertici di numeri in virgola mobile per le coordinate. Per il massimo
efficienza, scrivi queste coordinate in un valore ByteBuffer
, che viene passato all'interno
Pipeline grafica OpenGL ES per l'elaborazione.
Kotlin
// number of coordinates per vertex in this array
const val COORDS_PER_VERTEX = 3
var triangleCoords = floatArrayOf( // in counterclockwise order:
0.0f, 0.622008459f, 0.0f, // top
-0.5f, -0.311004243f, 0.0f, // bottom left
0.5f, -0.311004243f, 0.0f // bottom right
)
class Triangle {
// Set color with red, green, blue and alpha (opacity) values
val color = floatArrayOf(0.63671875f, 0.76953125f, 0.22265625f, 1.0f)
private var vertexBuffer: FloatBuffer =
// (number of coordinate values * 4 bytes per float)
ByteBuffer.allocateDirect(triangleCoords.size * 4).run {
// use the device hardware's native byte order
order(ByteOrder.nativeOrder())
// create a floating point buffer from the ByteBuffer
asFloatBuffer().apply {
// add the coordinates to the FloatBuffer
put(triangleCoords)
// set the buffer to read the first coordinate
position(0)
}
}
}
Java
public class Triangle {
private FloatBuffer vertexBuffer;
// number of coordinates per vertex in this array
static final int COORDS_PER_VERTEX = 3;
static float triangleCoords[] = { // in counterclockwise order:
0.0f, 0.622008459f, 0.0f, // top
-0.5f, -0.311004243f, 0.0f, // bottom left
0.5f, -0.311004243f, 0.0f // bottom right
};
// Set color with red, green, blue and alpha (opacity) values
float color[] = { 0.63671875f, 0.76953125f, 0.22265625f, 1.0f };
public Triangle() {
// initialize vertex byte buffer for shape coordinates
ByteBuffer bb = ByteBuffer.allocateDirect(
// (number of coordinate values * 4 bytes per float)
triangleCoords.length * 4);
// use the device hardware's native byte order
bb.order(ByteOrder.nativeOrder());
// create a floating point buffer from the ByteBuffer
vertexBuffer = bb.asFloatBuffer();
// add the coordinates to the FloatBuffer
vertexBuffer.put(triangleCoords);
// set the buffer to read the first coordinate
vertexBuffer.position(0);
}
}
Per impostazione predefinita, OpenGL ES assume un sistema di coordinate in cui [0,0,0] (X,Y,Z) specifica il centro di
il frame GLSurfaceView
,
[1,1,0] è l'angolo in alto a destra del riquadro e
[-1,-1,0] è l'angolo in basso a sinistra del riquadro. Per un'illustrazione di questo sistema di coordinate, vedere il
Sviluppatore OpenGL ES
.
Tieni presente che le coordinate di questa forma sono definite in ordine antiorario. Il disegno
è importante perché definisce quale lato corrisponde alla faccia anteriore della forma, che in genere
che desideri tracciare e la faccia posteriore, che puoi scegliere di non disegnare con la modalità OpenGL ES
facciale. Per ulteriori informazioni su volti e eliminazione, vedi
Guida per gli sviluppatori di OpenGL ES.
Definisci un quadrato
La definizione dei triangoli è abbastanza facile in OpenGL, ma cosa succede se vuoi ottenere
complessi? Di', un quadrato? Ci sono molti modi per farlo, ma un percorso tipico per tracciare un
in OpenGL ES consiste nell'utilizzare due triangoli disegnati insieme:
Figura 1. Disegno di un quadrato usando due triangoli.
Anche in questo caso, devi definire i vertici in ordine antiorario per entrambi i triangoli che
rappresentano questa forma e inserisci i valori in un ByteBuffer
. Per evitare
definendo le due coordinate condivise da ciascun triangolo due volte, utilizza un elenco di disegni per indicare
Pipeline grafica OpenGL ES come disegnare questi vertici. Ecco il codice per questa forma:
Kotlin
// number of coordinates per vertex in this array
const val COORDS_PER_VERTEX = 3
var squareCoords = floatArrayOf(
-0.5f, 0.5f, 0.0f, // top left
-0.5f, -0.5f, 0.0f, // bottom left
0.5f, -0.5f, 0.0f, // bottom right
0.5f, 0.5f, 0.0f // top right
)
class Square2 {
private val drawOrder = shortArrayOf(0, 1, 2, 0, 2, 3) // order to draw vertices
// initialize vertex byte buffer for shape coordinates
private val vertexBuffer: FloatBuffer =
// (# of coordinate values * 4 bytes per float)
ByteBuffer.allocateDirect(squareCoords.size * 4).run {
order(ByteOrder.nativeOrder())
asFloatBuffer().apply {
put(squareCoords)
position(0)
}
}
// initialize byte buffer for the draw list
private val drawListBuffer: ShortBuffer =
// (# of coordinate values * 2 bytes per short)
ByteBuffer.allocateDirect(drawOrder.size * 2).run {
order(ByteOrder.nativeOrder())
asShortBuffer().apply {
put(drawOrder)
position(0)
}
}
}
Java
public class Square {
private FloatBuffer vertexBuffer;
private ShortBuffer drawListBuffer;
// number of coordinates per vertex in this array
static final int COORDS_PER_VERTEX = 3;
static float squareCoords[] = {
-0.5f, 0.5f, 0.0f, // top left
-0.5f, -0.5f, 0.0f, // bottom left
0.5f, -0.5f, 0.0f, // bottom right
0.5f, 0.5f, 0.0f }; // top right
private short drawOrder[] = { 0, 1, 2, 0, 2, 3 }; // order to draw vertices
public Square() {
// initialize vertex byte buffer for shape coordinates
ByteBuffer bb = ByteBuffer.allocateDirect(
// (# of coordinate values * 4 bytes per float)
squareCoords.length * 4);
bb.order(ByteOrder.nativeOrder());
vertexBuffer = bb.asFloatBuffer();
vertexBuffer.put(squareCoords);
vertexBuffer.position(0);
// initialize byte buffer for the draw list
ByteBuffer dlb = ByteBuffer.allocateDirect(
// (# of coordinate values * 2 bytes per short)
drawOrder.length * 2);
dlb.order(ByteOrder.nativeOrder());
drawListBuffer = dlb.asShortBuffer();
drawListBuffer.put(drawOrder);
drawListBuffer.position(0);
}
}
Questo esempio ti offre un'idea di ciò che serve per creare forme più complesse con OpenGL. Nella
in generale si usano raccolte di triangoli per disegnare oggetti. Nella prossima lezione imparerai a disegnare
queste forme sullo schermo.
I campioni di contenuti e codice in questa pagina sono soggetti alle licenze descritte nella Licenza per i contenuti. Java e OpenJDK sono marchi o marchi registrati di Oracle e/o delle sue società consociate.
Ultimo aggiornamento 2025-07-27 UTC.
[[["Facile da capire","easyToUnderstand","thumb-up"],["Il problema è stato risolto","solvedMyProblem","thumb-up"],["Altra","otherUp","thumb-up"]],[["Mancano le informazioni di cui ho bisogno","missingTheInformationINeed","thumb-down"],["Troppo complicato/troppi passaggi","tooComplicatedTooManySteps","thumb-down"],["Obsoleti","outOfDate","thumb-down"],["Problema di traduzione","translationIssue","thumb-down"],["Problema relativo a esempi/codice","samplesCodeIssue","thumb-down"],["Altra","otherDown","thumb-down"]],["Ultimo aggiornamento 2025-07-27 UTC."],[],[],null,["# Define shapes\n\nBeing able to define shapes to be drawn in the context of an OpenGL ES view is the first step in\ncreating high-end graphics for your app. Drawing with OpenGL ES can be a little tricky without\nknowing a few basic things about how OpenGL ES expects you to define graphic objects.\n\nThis lesson explains the OpenGL ES coordinate system relative to an Android device screen, the\nbasics of defining a shape, shape faces, as well as defining a triangle and a square.\n\nDefine a triangle\n-----------------\n\nOpenGL ES allows you to define drawn objects using coordinates in three-dimensional space. So,\nbefore you can draw a triangle, you must define its coordinates. In OpenGL, the typical way to do\nthis is to define a vertex array of floating point numbers for the coordinates. For maximum\nefficiency, you write these coordinates into a [ByteBuffer](/reference/java/nio/ByteBuffer), that is passed into the\nOpenGL ES graphics pipeline for processing. \n\n### Kotlin\n\n```kotlin\n// number of coordinates per vertex in this array\nconst val COORDS_PER_VERTEX = 3\nvar triangleCoords = floatArrayOf( // in counterclockwise order:\n 0.0f, 0.622008459f, 0.0f, // top\n -0.5f, -0.311004243f, 0.0f, // bottom left\n 0.5f, -0.311004243f, 0.0f // bottom right\n)\n\nclass Triangle {\n\n // Set color with red, green, blue and alpha (opacity) values\n val color = floatArrayOf(0.63671875f, 0.76953125f, 0.22265625f, 1.0f)\n\n private var vertexBuffer: FloatBuffer =\n // (number of coordinate values * 4 bytes per float)\n ByteBuffer.allocateDirect(triangleCoords.size * 4).run {\n // use the device hardware's native byte order\n order(ByteOrder.nativeOrder())\n\n // create a floating point buffer from the ByteBuffer\n asFloatBuffer().apply {\n // add the coordinates to the FloatBuffer\n put(triangleCoords)\n // set the buffer to read the first coordinate\n position(0)\n }\n }\n}\n```\n\n### Java\n\n```java\npublic class Triangle {\n\n private FloatBuffer vertexBuffer;\n\n // number of coordinates per vertex in this array\n static final int COORDS_PER_VERTEX = 3;\n static float triangleCoords[] = { // in counterclockwise order:\n 0.0f, 0.622008459f, 0.0f, // top\n -0.5f, -0.311004243f, 0.0f, // bottom left\n 0.5f, -0.311004243f, 0.0f // bottom right\n };\n\n // Set color with red, green, blue and alpha (opacity) values\n float color[] = { 0.63671875f, 0.76953125f, 0.22265625f, 1.0f };\n\n public Triangle() {\n // initialize vertex byte buffer for shape coordinates\n ByteBuffer bb = ByteBuffer.allocateDirect(\n // (number of coordinate values * 4 bytes per float)\n triangleCoords.length * 4);\n // use the device hardware's native byte order\n bb.order(ByteOrder.nativeOrder());\n\n // create a floating point buffer from the ByteBuffer\n vertexBuffer = bb.asFloatBuffer();\n // add the coordinates to the FloatBuffer\n vertexBuffer.put(triangleCoords);\n // set the buffer to read the first coordinate\n vertexBuffer.position(0);\n }\n}\n```\n\nBy default, OpenGL ES assumes a coordinate system where \\[0,0,0\\] (X,Y,Z) specifies the center of\nthe [GLSurfaceView](/reference/android/opengl/GLSurfaceView) frame,\n\\[1,1,0\\] is the top right corner of the frame and\n\\[-1,-1,0\\] is bottom left corner of the frame. For an illustration of this coordinate system, see the\n[OpenGL ES developer\nguide](/develop/ui/views/graphics/opengl/about-opengl#coordinate-mapping).\n\nNote that the coordinates of this shape are defined in a counterclockwise order. The drawing\norder is important because it defines which side is the front face of the shape, which you typically\nwant to have drawn, and the back face, which you can choose to not draw using the OpenGL ES cull\nface feature. For more information about faces and culling, see the\n[OpenGL ES](/develop/ui/views/graphics/opengl/about-opengl#faces-winding) developer guide.\n\nDefine a square\n---------------\n\nDefining triangles is pretty easy in OpenGL, but what if you want to get a just a little more\ncomplex? Say, a square? There are a number of ways to do this, but a typical path to drawing such a\nshape in OpenGL ES is to use two triangles drawn together:\n\n\n**Figure 1.** Drawing a square using two triangles.\n\nAgain, you should define the vertices in a counterclockwise order for both triangles that\nrepresent this shape, and put the values in a [ByteBuffer](/reference/java/nio/ByteBuffer). In order to avoid\ndefining the two coordinates shared by each triangle twice, use a drawing list to tell the\nOpenGL ES graphics pipeline how to draw these vertices. Here's the code for this shape: \n\n### Kotlin\n\n```kotlin\n// number of coordinates per vertex in this array\nconst val COORDS_PER_VERTEX = 3\nvar squareCoords = floatArrayOf(\n -0.5f, 0.5f, 0.0f, // top left\n -0.5f, -0.5f, 0.0f, // bottom left\n 0.5f, -0.5f, 0.0f, // bottom right\n 0.5f, 0.5f, 0.0f // top right\n)\n\nclass Square2 {\n\n private val drawOrder = shortArrayOf(0, 1, 2, 0, 2, 3) // order to draw vertices\n\n // initialize vertex byte buffer for shape coordinates\n private val vertexBuffer: FloatBuffer =\n // (# of coordinate values * 4 bytes per float)\n ByteBuffer.allocateDirect(squareCoords.size * 4).run {\n order(ByteOrder.nativeOrder())\n asFloatBuffer().apply {\n put(squareCoords)\n position(0)\n }\n }\n\n // initialize byte buffer for the draw list\n private val drawListBuffer: ShortBuffer =\n // (# of coordinate values * 2 bytes per short)\n ByteBuffer.allocateDirect(drawOrder.size * 2).run {\n order(ByteOrder.nativeOrder())\n asShortBuffer().apply {\n put(drawOrder)\n position(0)\n }\n }\n}\n```\n\n### Java\n\n```java\npublic class Square {\n\n private FloatBuffer vertexBuffer;\n private ShortBuffer drawListBuffer;\n\n // number of coordinates per vertex in this array\n static final int COORDS_PER_VERTEX = 3;\n static float squareCoords[] = {\n -0.5f, 0.5f, 0.0f, // top left\n -0.5f, -0.5f, 0.0f, // bottom left\n 0.5f, -0.5f, 0.0f, // bottom right\n 0.5f, 0.5f, 0.0f }; // top right\n\n private short drawOrder[] = { 0, 1, 2, 0, 2, 3 }; // order to draw vertices\n\n public Square() {\n // initialize vertex byte buffer for shape coordinates\n ByteBuffer bb = ByteBuffer.allocateDirect(\n // (# of coordinate values * 4 bytes per float)\n squareCoords.length * 4);\n bb.order(ByteOrder.nativeOrder());\n vertexBuffer = bb.asFloatBuffer();\n vertexBuffer.put(squareCoords);\n vertexBuffer.position(0);\n\n // initialize byte buffer for the draw list\n ByteBuffer dlb = ByteBuffer.allocateDirect(\n // (# of coordinate values * 2 bytes per short)\n drawOrder.length * 2);\n dlb.order(ByteOrder.nativeOrder());\n drawListBuffer = dlb.asShortBuffer();\n drawListBuffer.put(drawOrder);\n drawListBuffer.position(0);\n }\n}\n```\n\nThis example gives you a peek at what it takes to create more complex shapes with OpenGL. In\ngeneral, you use collections of triangles to draw objects. In the next lesson, you learn how to draw\nthese shapes on screen."]]