Cómo definir formas
Organiza tus páginas con colecciones
Guarda y categoriza el contenido según tus preferencias.
Poder definir formas que se dibujarán en el contexto de una vista de OpenGL ES es el primer paso en
crear gráficos de alta gama para tu aplicación. Dibujar con OpenGL ES puede ser un poco complicado sin
conociendo algunas cosas básicas sobre cómo OpenGL ES espera que definas objetos gráficos.
Esta lección explica el sistema de coordenadas OpenGL ES en relación con la pantalla de un dispositivo Android, el
conceptos básicos para definir formas y sus caras, así como para definir un triángulo y un cuadrado.
Define un triángulo
OpenGL ES te permite definir objetos dibujados mediante coordenadas en un espacio tridimensional. Entonces:
antes de dibujar un triángulo, debes definir sus coordenadas. En OpenGL, la forma típica de hacer
esto es para definir un array de vértices de números de punto flotante para las coordenadas. Para obtener la máxima
eficiencia, escribes estas coordenadas en un ByteBuffer
, que se pasa al
Canalización de gráficos de OpenGL ES para su procesamiento.
Kotlin
// number of coordinates per vertex in this array
const val COORDS_PER_VERTEX = 3
var triangleCoords = floatArrayOf( // in counterclockwise order:
0.0f, 0.622008459f, 0.0f, // top
-0.5f, -0.311004243f, 0.0f, // bottom left
0.5f, -0.311004243f, 0.0f // bottom right
)
class Triangle {
// Set color with red, green, blue and alpha (opacity) values
val color = floatArrayOf(0.63671875f, 0.76953125f, 0.22265625f, 1.0f)
private var vertexBuffer: FloatBuffer =
// (number of coordinate values * 4 bytes per float)
ByteBuffer.allocateDirect(triangleCoords.size * 4).run {
// use the device hardware's native byte order
order(ByteOrder.nativeOrder())
// create a floating point buffer from the ByteBuffer
asFloatBuffer().apply {
// add the coordinates to the FloatBuffer
put(triangleCoords)
// set the buffer to read the first coordinate
position(0)
}
}
}
Java
public class Triangle {
private FloatBuffer vertexBuffer;
// number of coordinates per vertex in this array
static final int COORDS_PER_VERTEX = 3;
static float triangleCoords[] = { // in counterclockwise order:
0.0f, 0.622008459f, 0.0f, // top
-0.5f, -0.311004243f, 0.0f, // bottom left
0.5f, -0.311004243f, 0.0f // bottom right
};
// Set color with red, green, blue and alpha (opacity) values
float color[] = { 0.63671875f, 0.76953125f, 0.22265625f, 1.0f };
public Triangle() {
// initialize vertex byte buffer for shape coordinates
ByteBuffer bb = ByteBuffer.allocateDirect(
// (number of coordinate values * 4 bytes per float)
triangleCoords.length * 4);
// use the device hardware's native byte order
bb.order(ByteOrder.nativeOrder());
// create a floating point buffer from the ByteBuffer
vertexBuffer = bb.asFloatBuffer();
// add the coordinates to the FloatBuffer
vertexBuffer.put(triangleCoords);
// set the buffer to read the first coordinate
vertexBuffer.position(0);
}
}
De forma predeterminada, OpenGL ES asume un sistema de coordenadas en el que [0,0,0] (X,Y,Z) especifica el centro de
el marco GLSurfaceView
[1,1,0] es la esquina superior derecha del marco y
[-1,-1,0] es la esquina inferior izquierda del marco. Para ver una ilustración de este sistema de coordenadas, consulta la
Desarrollador de OpenGL ES
de la guía de YouTube.
Ten en cuenta que las coordenadas de esta forma se definen en el sentido antihorario. El dibujo
es importante porque define qué lado es la cara frontal de la forma, que normalmente
que deseas dibujar, y la cara posterior, que puedes elegir no dibujar usando el comando de OpenGL ES
rasgo facial. Para obtener más información sobre caras y la selección, consulta la
OpenGL ES para desarrolladores.
Define un cuadrado
Definir triángulos es bastante fácil en OpenGL, pero ¿qué pasa si quieres obtener
complejos? Por ejemplo, un cuadrado. Hay varias formas de hacer esto, pero un camino típico para dibujar tal
en OpenGL ES es usar dos triángulos dibujados juntos:
Figura 1: Cómo dibujar un cuadrado usando dos triángulos
Una vez más, debes definir los vértices en el sentido contrario a las manecillas del reloj para los dos triángulos que
representar esta forma y colocar los valores en un ByteBuffer
. Con el fin de evitar
definiendo las dos coordenadas compartidas por cada triángulo dos veces, usa una lista de dibujo para indicarle a
Canalización de gráficos de OpenGL ES, cómo dibujar estos vértices A continuación, se detalla el código para esa forma:
Kotlin
// number of coordinates per vertex in this array
const val COORDS_PER_VERTEX = 3
var squareCoords = floatArrayOf(
-0.5f, 0.5f, 0.0f, // top left
-0.5f, -0.5f, 0.0f, // bottom left
0.5f, -0.5f, 0.0f, // bottom right
0.5f, 0.5f, 0.0f // top right
)
class Square2 {
private val drawOrder = shortArrayOf(0, 1, 2, 0, 2, 3) // order to draw vertices
// initialize vertex byte buffer for shape coordinates
private val vertexBuffer: FloatBuffer =
// (# of coordinate values * 4 bytes per float)
ByteBuffer.allocateDirect(squareCoords.size * 4).run {
order(ByteOrder.nativeOrder())
asFloatBuffer().apply {
put(squareCoords)
position(0)
}
}
// initialize byte buffer for the draw list
private val drawListBuffer: ShortBuffer =
// (# of coordinate values * 2 bytes per short)
ByteBuffer.allocateDirect(drawOrder.size * 2).run {
order(ByteOrder.nativeOrder())
asShortBuffer().apply {
put(drawOrder)
position(0)
}
}
}
Java
public class Square {
private FloatBuffer vertexBuffer;
private ShortBuffer drawListBuffer;
// number of coordinates per vertex in this array
static final int COORDS_PER_VERTEX = 3;
static float squareCoords[] = {
-0.5f, 0.5f, 0.0f, // top left
-0.5f, -0.5f, 0.0f, // bottom left
0.5f, -0.5f, 0.0f, // bottom right
0.5f, 0.5f, 0.0f }; // top right
private short drawOrder[] = { 0, 1, 2, 0, 2, 3 }; // order to draw vertices
public Square() {
// initialize vertex byte buffer for shape coordinates
ByteBuffer bb = ByteBuffer.allocateDirect(
// (# of coordinate values * 4 bytes per float)
squareCoords.length * 4);
bb.order(ByteOrder.nativeOrder());
vertexBuffer = bb.asFloatBuffer();
vertexBuffer.put(squareCoords);
vertexBuffer.position(0);
// initialize byte buffer for the draw list
ByteBuffer dlb = ByteBuffer.allocateDirect(
// (# of coordinate values * 2 bytes per short)
drawOrder.length * 2);
dlb.order(ByteOrder.nativeOrder());
drawListBuffer = dlb.asShortBuffer();
drawListBuffer.put(drawOrder);
drawListBuffer.position(0);
}
}
En este ejemplo, se muestra lo que se necesita para crear formas más complejas con OpenGL. En
general, se usan colecciones de triángulos para dibujar objetos. En la próxima lección, aprenderás a dibujar
estas formas en la pantalla.
El contenido y las muestras de código que aparecen en esta página están sujetas a las licencias que se describen en la Licencia de Contenido. Java y OpenJDK son marcas registradas de Oracle o sus afiliados.
Última actualización: 2025-07-27 (UTC)
[[["Fácil de comprender","easyToUnderstand","thumb-up"],["Resolvió mi problema","solvedMyProblem","thumb-up"],["Otro","otherUp","thumb-up"]],[["Falta la información que necesito","missingTheInformationINeed","thumb-down"],["Muy complicado o demasiados pasos","tooComplicatedTooManySteps","thumb-down"],["Desactualizado","outOfDate","thumb-down"],["Problema de traducción","translationIssue","thumb-down"],["Problema con las muestras o los códigos","samplesCodeIssue","thumb-down"],["Otro","otherDown","thumb-down"]],["Última actualización: 2025-07-27 (UTC)"],[],[],null,["# Define shapes\n\nBeing able to define shapes to be drawn in the context of an OpenGL ES view is the first step in\ncreating high-end graphics for your app. Drawing with OpenGL ES can be a little tricky without\nknowing a few basic things about how OpenGL ES expects you to define graphic objects.\n\nThis lesson explains the OpenGL ES coordinate system relative to an Android device screen, the\nbasics of defining a shape, shape faces, as well as defining a triangle and a square.\n\nDefine a triangle\n-----------------\n\nOpenGL ES allows you to define drawn objects using coordinates in three-dimensional space. So,\nbefore you can draw a triangle, you must define its coordinates. In OpenGL, the typical way to do\nthis is to define a vertex array of floating point numbers for the coordinates. For maximum\nefficiency, you write these coordinates into a [ByteBuffer](/reference/java/nio/ByteBuffer), that is passed into the\nOpenGL ES graphics pipeline for processing. \n\n### Kotlin\n\n```kotlin\n// number of coordinates per vertex in this array\nconst val COORDS_PER_VERTEX = 3\nvar triangleCoords = floatArrayOf( // in counterclockwise order:\n 0.0f, 0.622008459f, 0.0f, // top\n -0.5f, -0.311004243f, 0.0f, // bottom left\n 0.5f, -0.311004243f, 0.0f // bottom right\n)\n\nclass Triangle {\n\n // Set color with red, green, blue and alpha (opacity) values\n val color = floatArrayOf(0.63671875f, 0.76953125f, 0.22265625f, 1.0f)\n\n private var vertexBuffer: FloatBuffer =\n // (number of coordinate values * 4 bytes per float)\n ByteBuffer.allocateDirect(triangleCoords.size * 4).run {\n // use the device hardware's native byte order\n order(ByteOrder.nativeOrder())\n\n // create a floating point buffer from the ByteBuffer\n asFloatBuffer().apply {\n // add the coordinates to the FloatBuffer\n put(triangleCoords)\n // set the buffer to read the first coordinate\n position(0)\n }\n }\n}\n```\n\n### Java\n\n```java\npublic class Triangle {\n\n private FloatBuffer vertexBuffer;\n\n // number of coordinates per vertex in this array\n static final int COORDS_PER_VERTEX = 3;\n static float triangleCoords[] = { // in counterclockwise order:\n 0.0f, 0.622008459f, 0.0f, // top\n -0.5f, -0.311004243f, 0.0f, // bottom left\n 0.5f, -0.311004243f, 0.0f // bottom right\n };\n\n // Set color with red, green, blue and alpha (opacity) values\n float color[] = { 0.63671875f, 0.76953125f, 0.22265625f, 1.0f };\n\n public Triangle() {\n // initialize vertex byte buffer for shape coordinates\n ByteBuffer bb = ByteBuffer.allocateDirect(\n // (number of coordinate values * 4 bytes per float)\n triangleCoords.length * 4);\n // use the device hardware's native byte order\n bb.order(ByteOrder.nativeOrder());\n\n // create a floating point buffer from the ByteBuffer\n vertexBuffer = bb.asFloatBuffer();\n // add the coordinates to the FloatBuffer\n vertexBuffer.put(triangleCoords);\n // set the buffer to read the first coordinate\n vertexBuffer.position(0);\n }\n}\n```\n\nBy default, OpenGL ES assumes a coordinate system where \\[0,0,0\\] (X,Y,Z) specifies the center of\nthe [GLSurfaceView](/reference/android/opengl/GLSurfaceView) frame,\n\\[1,1,0\\] is the top right corner of the frame and\n\\[-1,-1,0\\] is bottom left corner of the frame. For an illustration of this coordinate system, see the\n[OpenGL ES developer\nguide](/develop/ui/views/graphics/opengl/about-opengl#coordinate-mapping).\n\nNote that the coordinates of this shape are defined in a counterclockwise order. The drawing\norder is important because it defines which side is the front face of the shape, which you typically\nwant to have drawn, and the back face, which you can choose to not draw using the OpenGL ES cull\nface feature. For more information about faces and culling, see the\n[OpenGL ES](/develop/ui/views/graphics/opengl/about-opengl#faces-winding) developer guide.\n\nDefine a square\n---------------\n\nDefining triangles is pretty easy in OpenGL, but what if you want to get a just a little more\ncomplex? Say, a square? There are a number of ways to do this, but a typical path to drawing such a\nshape in OpenGL ES is to use two triangles drawn together:\n\n\n**Figure 1.** Drawing a square using two triangles.\n\nAgain, you should define the vertices in a counterclockwise order for both triangles that\nrepresent this shape, and put the values in a [ByteBuffer](/reference/java/nio/ByteBuffer). In order to avoid\ndefining the two coordinates shared by each triangle twice, use a drawing list to tell the\nOpenGL ES graphics pipeline how to draw these vertices. Here's the code for this shape: \n\n### Kotlin\n\n```kotlin\n// number of coordinates per vertex in this array\nconst val COORDS_PER_VERTEX = 3\nvar squareCoords = floatArrayOf(\n -0.5f, 0.5f, 0.0f, // top left\n -0.5f, -0.5f, 0.0f, // bottom left\n 0.5f, -0.5f, 0.0f, // bottom right\n 0.5f, 0.5f, 0.0f // top right\n)\n\nclass Square2 {\n\n private val drawOrder = shortArrayOf(0, 1, 2, 0, 2, 3) // order to draw vertices\n\n // initialize vertex byte buffer for shape coordinates\n private val vertexBuffer: FloatBuffer =\n // (# of coordinate values * 4 bytes per float)\n ByteBuffer.allocateDirect(squareCoords.size * 4).run {\n order(ByteOrder.nativeOrder())\n asFloatBuffer().apply {\n put(squareCoords)\n position(0)\n }\n }\n\n // initialize byte buffer for the draw list\n private val drawListBuffer: ShortBuffer =\n // (# of coordinate values * 2 bytes per short)\n ByteBuffer.allocateDirect(drawOrder.size * 2).run {\n order(ByteOrder.nativeOrder())\n asShortBuffer().apply {\n put(drawOrder)\n position(0)\n }\n }\n}\n```\n\n### Java\n\n```java\npublic class Square {\n\n private FloatBuffer vertexBuffer;\n private ShortBuffer drawListBuffer;\n\n // number of coordinates per vertex in this array\n static final int COORDS_PER_VERTEX = 3;\n static float squareCoords[] = {\n -0.5f, 0.5f, 0.0f, // top left\n -0.5f, -0.5f, 0.0f, // bottom left\n 0.5f, -0.5f, 0.0f, // bottom right\n 0.5f, 0.5f, 0.0f }; // top right\n\n private short drawOrder[] = { 0, 1, 2, 0, 2, 3 }; // order to draw vertices\n\n public Square() {\n // initialize vertex byte buffer for shape coordinates\n ByteBuffer bb = ByteBuffer.allocateDirect(\n // (# of coordinate values * 4 bytes per float)\n squareCoords.length * 4);\n bb.order(ByteOrder.nativeOrder());\n vertexBuffer = bb.asFloatBuffer();\n vertexBuffer.put(squareCoords);\n vertexBuffer.position(0);\n\n // initialize byte buffer for the draw list\n ByteBuffer dlb = ByteBuffer.allocateDirect(\n // (# of coordinate values * 2 bytes per short)\n drawOrder.length * 2);\n dlb.order(ByteOrder.nativeOrder());\n drawListBuffer = dlb.asShortBuffer();\n drawListBuffer.put(drawOrder);\n drawListBuffer.position(0);\n }\n}\n```\n\nThis example gives you a peek at what it takes to create more complex shapes with OpenGL. In\ngeneral, you use collections of triangles to draw objects. In the next lesson, you learn how to draw\nthese shapes on screen."]]