Depurar seus fragmentos

Este guia aborda ferramentas que podem ser usadas para depurar fragmentos.

Gerar registros do FragmentManager

O FragmentManager pode emitir várias mensagens para o Logcat. Esse recurso fica desativado por padrão, mas às vezes essas mensagens de registro podem ajudar a resolver problemas com os fragmentos. O FragmentManager emite a saída mais significativa nos níveis de registro DEBUG e VERBOSE.

É possível ativar a geração de registros usando o seguinte comando adb shell:

adb shell setprop log.tag.FragmentManager DEBUG

Você também pode ativar o registro detalhado desta forma:

adb shell setprop log.tag.FragmentManager VERBOSE

Se você ativar o registro detalhado, poderá aplicar um filtro de nível de registro na janela do Logcat. No entanto, isso filtra todos os registros, não apenas aqueles do FragmentManager. Geralmente, é melhor ativar a geração de registros do FragmentManager apenas no nível de registro necessário.

Gerar registros DEBUG

No nível DEBUG, o FragmentManager geralmente emite mensagens de registro relacionadas a mudanças no estado do ciclo de vida. Cada entrada de registro contém o despejo toString() do Fragment. Uma entrada de registro consiste nas seguintes informações:

  • O nome de classe simples da instância do Fragment.
  • O código hash de identidade da instância do Fragment.
  • O ID exclusivo do gerenciador de fragmentos da instância do Fragment. Ele é estável entre as mudanças de configuração e o encerramento e recriação de processos.
  • O ID do contêiner em que o Fragment é adicionado, mas apenas se definido.
  • A tag do Fragment, mas apenas se definida.

Confira a seguir um exemplo de entrada de registro DEBUG:

D/FragmentManager: moveto ATTACHED: NavHostFragment{92d8f1d} (fd92599e-c349-4660-b2d6-0ece9ec72f7b id=0x7f080116)
  • A classe do Fragment é NavHostFragment.
  • O código hash de identidade é 92d8f1d.
  • O ID exclusivo é fd92599e-c349-4660-b2d6-0ece9ec72f7b.
  • O ID do contêiner é 0x7f080116.
  • A tag foi omitida porque nenhuma foi definida. Quando presente, ela segue o ID no formato tag=tag_value.

Para simplificar e facilitar a leitura, os UUIDs são encurtados nos exemplos a seguir.

Confira uma classe NavHostFragment sendo inicializada e, em seguida, o startDestination Fragment do tipo FirstFragment sendo criado e fazendo a transição para o estado RESUMED:

D/FragmentManager: moveto ATTACHED: NavHostFragment{92d8f1d} (<UUID> id=0x7f080116)
D/FragmentManager:   mName=null mIndex=-1 mCommitted=false
D/FragmentManager:   Operations:
D/FragmentManager:     Op #0: SET_PRIMARY_NAV NavHostFragment{92d8f1d} (<UUID> id=0x7f080116)
D/FragmentManager: moveto CREATED: NavHostFragment{92d8f1d} (<UUID> id=0x7f080116)
D/FragmentManager:   mName=null mIndex=-1 mCommitted=false
D/FragmentManager:   Operations:
D/FragmentManager:     Op #0: REPLACE FirstFragment{ccd2189} (<UUID> id=0x7f080116)
D/FragmentManager:     Op #1: SET_PRIMARY_NAV FirstFragment{ccd2189} (<UUID> id=0x7f080116)
D/FragmentManager: moveto ATTACHED: FirstFragment{ccd2189} (<UUID> id=0x7f080116)
D/FragmentManager: moveto CREATED: FirstFragment{ccd2189} (<UUID> id=0x7f080116)
D/FragmentManager: moveto CREATE_VIEW: NavHostFragment{92d8f1d} (<UUID> id=0x7f080116)
D/FragmentManager: moveto CREATE_VIEW: FirstFragment{ccd2189} (<UUID> id=0x7f080116)
D/FragmentManager: moveto ACTIVITY_CREATED: NavHostFragment{92d8f1d} (<UUID> id=0x7f080116)
D/FragmentManager: moveto RESTORE_VIEW_STATE: NavHostFragment{92d8f1d} (<UUID> id=0x7f080116)
D/FragmentManager: moveto ACTIVITY_CREATED: FirstFragment{ccd2189} (<UUID> id=0x7f080116)
D/FragmentManager: moveto RESTORE_VIEW_STATE: FirstFragment{ccd2189} (<UUID> id=0x7f080116)
D/FragmentManager: moveto STARTED: NavHostFragment{92d8f1d} (<UUID> id=0x7f080116)
D/FragmentManager: moveto STARTED: FirstFragment{ccd2189} (<UUID> id=0x7f080116)
D/FragmentManager: moveto RESUMED: NavHostFragment{92d8f1d} (<UUID> id=0x7f080116)
D/FragmentManager: moveto RESUMED: FirstFragment{ccd2189} (<UUID> id=0x7f080116)

Após uma interação do usuário, o FirstFragment sai dos vários estados do ciclo de vida. Em seguida, o SecondFragment é instanciado e faz a transição para o estado RESUMED:

D/FragmentManager:   mName=07c8a5e8-54a3-4e21-b2cc-c8efc37c4cf5 mIndex=-1 mCommitted=false
D/FragmentManager:   Operations:
D/FragmentManager:     Op #0: REPLACE SecondFragment{84132db} (<UUID> id=0x7f080116)
D/FragmentManager:     Op #1: SET_PRIMARY_NAV SecondFragment{84132db} (<UUID> id=0x7f080116)
D/FragmentManager: movefrom RESUMED: FirstFragment{ccd2189} (<UUID> id=0x7f080116)
D/FragmentManager: movefrom STARTED: FirstFragment{ccd2189} (<UUID> id=0x7f080116)
D/FragmentManager: movefrom ACTIVITY_CREATED: FirstFragment{ccd2189} (<UUID> id=0x7f080116)
D/FragmentManager: moveto ATTACHED: SecondFragment{84132db} (<UUID> id=0x7f080116)
D/FragmentManager: moveto CREATED: SecondFragment{84132db} (<UUID> id=0x7f080116)
D/FragmentManager: moveto CREATE_VIEW: SecondFragment{84132db} (<UUID> id=0x7f080116)
D/FragmentManager: moveto ACTIVITY_CREATED: SecondFragment{84132db} (<UUID> id=0x7f080116)
D/FragmentManager: moveto RESTORE_VIEW_STATE: SecondFragment{84132db} (<UUID> id=0x7f080116)
D/FragmentManager: moveto STARTED: SecondFragment{84132db} (<UUID> id=0x7f080116)
D/FragmentManager: movefrom CREATE_VIEW: FirstFragment{ccd2189} (<UUID> id=0x7f080116)
D/FragmentManager: moveto RESUMED: SecondFragment{84132db} (<UUID> id=0x7f080116)

Todas as instâncias do Fragment são sufixadas por um identificador para que você possa rastrear instâncias diferentes da mesma classe do Fragment.

Gerar registros VERBOSE

No nível VERBOSE, o FragmentManager geralmente emite mensagens de registro sobre o próprio estado interno:

V/FragmentManager: Run: BackStackEntry{f9d3ff3}
V/FragmentManager: add: NavHostFragment{86274b0} (<UUID> id=0x7f080130)
V/FragmentManager: Added fragment to active set NavHostFragment{86274b0} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 1 for NavHostFragment{86274b0} (<UUID> id=0x7f080130)
D/FragmentManager: moveto ATTACHED: NavHostFragment{86274b0} (<UUID> id=0x7f080130)
V/FragmentManager: Commit: BackStackEntry{5cfd2ae}
D/FragmentManager:   mName=null mIndex=-1 mCommitted=false
D/FragmentManager:   Operations:
D/FragmentManager:     Op #0: SET_PRIMARY_NAV NavHostFragment{86274b0} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 1 for NavHostFragment{86274b0} (<UUID> id=0x7f080130)
D/FragmentManager: moveto CREATED: NavHostFragment{86274b0} (<UUID> id=0x7f080130)
V/FragmentManager: Commit: BackStackEntry{e93833f}
D/FragmentManager:   mName=null mIndex=-1 mCommitted=false
D/FragmentManager:   Operations:
D/FragmentManager:     Op #0: REPLACE FirstFragment{886440c} (<UUID> id=0x7f080130)
D/FragmentManager:     Op #1: SET_PRIMARY_NAV FirstFragment{886440c} (<UUID> id=0x7f080130)
V/FragmentManager: Run: BackStackEntry{e93833f}
V/FragmentManager: add: FirstFragment{886440c} (<UUID> id=0x7f080130)
V/FragmentManager: Added fragment to active set FirstFragment{886440c} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 1 for FirstFragment{886440c} (<UUID> id=0x7f080130)
D/FragmentManager: moveto ATTACHED: FirstFragment{886440c} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 1 for FirstFragment{886440c} (<UUID> id=0x7f080130)
D/FragmentManager: moveto CREATED: FirstFragment{886440c} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 1 for FirstFragment{886440c} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 1 for FirstFragment{886440c} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 1 for FirstFragment{886440c} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 1 for FirstFragment{886440c} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 1 for NavHostFragment{86274b0} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 1 for NavHostFragment{86274b0} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 1 for NavHostFragment{86274b0} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 4 for NavHostFragment{86274b0} (<UUID> id=0x7f080130)
D/FragmentManager: moveto CREATE_VIEW: NavHostFragment{86274b0} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 2 for FirstFragment{886440c} (<UUID> id=0x7f080130)
D/FragmentManager: moveto CREATE_VIEW: FirstFragment{886440c} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 2 for FirstFragment{886440c} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 2 for FirstFragment{886440c} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 4 for NavHostFragment{86274b0} (<UUID> id=0x7f080130)
D/FragmentManager: moveto ACTIVITY_CREATED: NavHostFragment{86274b0} (<UUID> id=0x7f080130)
D/FragmentManager: moveto RESTORE_VIEW_STATE: NavHostFragment{86274b0} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 4 for FirstFragment{886440c} (<UUID> id=0x7f080130)
D/FragmentManager: moveto ACTIVITY_CREATED: FirstFragment{886440c} (<UUID> id=0x7f080130)
D/FragmentManager: moveto RESTORE_VIEW_STATE: FirstFragment{886440c} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 4 for FirstFragment{886440c} (<UUID> id=0x7f080130)
V/FragmentManager: SpecialEffectsController: Enqueuing add operation for fragment FirstFragment{886440c} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 4 for FirstFragment{886440c} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 4 for FirstFragment{886440c} (<UUID> id=0x7f080130)
V/FragmentManager: SpecialEffectsController: For fragment FirstFragment{886440c} (<UUID> id=0x7f080130) mFinalState = VISIBLE -> VISIBLE.
V/FragmentManager: SpecialEffectsController: Container androidx.fragment.app.FragmentContainerView{7578ffa V.E...... ......I. 0,0-0,0 #7f080130 app:id/nav_host_fragment_content_fragment} is not attached to window. Cancelling pending operation Operation {382a9ab} {mFinalState = VISIBLE} {mLifecycleImpact = ADDING} {mFragment = FirstFragment{886440c} (<UUID> id=0x7f080130)}
V/FragmentManager: SpecialEffectsController: Operation {382a9ab} {mFinalState = VISIBLE} {mLifecycleImpact = ADDING} {mFragment = FirstFragment{886440c} (<UUID> id=0x7f080130)} has called complete.
V/FragmentManager: SpecialEffectsController: Setting view androidx.constraintlayout.widget.ConstraintLayout{3968808 I.E...... ......I. 0,0-0,0} to VISIBLE
V/FragmentManager: computeExpectedState() of 4 for FirstFragment{886440c} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 4 for NavHostFragment{86274b0} (<UUID> id=0x7f080130)
V/FragmentManager: SpecialEffectsController: Enqueuing add operation for fragment NavHostFragment{86274b0} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 4 for NavHostFragment{86274b0} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 4 for NavHostFragment{86274b0} (<UUID> id=0x7f080130)
V/FragmentManager: SpecialEffectsController: For fragment NavHostFragment{86274b0} (<UUID> id=0x7f080130) mFinalState = VISIBLE -> VISIBLE.
V/FragmentManager: SpecialEffectsController: Container androidx.fragment.app.FragmentContainerView{2ba8ba1 V.E...... ......I. 0,0-0,0 #7f080130 app:id/nav_host_fragment_content_fragment} is not attached to window. Cancelling pending operation Operation {f7eb1c6} {mFinalState = VISIBLE} {mLifecycleImpact = ADDING} {mFragment = NavHostFragment{86274b0} (<UUID> id=0x7f080130)}
V/FragmentManager: SpecialEffectsController: Operation {f7eb1c6} {mFinalState = VISIBLE} {mLifecycleImpact = ADDING} {mFragment = NavHostFragment{86274b0} (<UUID> id=0x7f080130)} has called complete.
V/FragmentManager: SpecialEffectsController: Setting view androidx.fragment.app.FragmentContainerView{7578ffa I.E...... ......I. 0,0-0,0 #7f080130 app:id/nav_host_fragment_content_fragment} to VISIBLE
V/FragmentManager: computeExpectedState() of 4 for NavHostFragment{86274b0} (<UUID> id=0x7f080130)
V/FragmentManager: Run: BackStackEntry{5cfd2ae}
V/FragmentManager: computeExpectedState() of 4 for NavHostFragment{86274b0} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 4 for NavHostFragment{86274b0} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 4 for NavHostFragment{86274b0} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 5 for NavHostFragment{86274b0} (<UUID> id=0x7f080130)
D/FragmentManager: moveto STARTED: NavHostFragment{86274b0} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 5 for FirstFragment{886440c} (<UUID> id=0x7f080130)
D/FragmentManager: moveto STARTED: FirstFragment{886440c} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 5 for FirstFragment{886440c} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 5 for FirstFragment{886440c} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 5 for NavHostFragment{86274b0} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 5 for NavHostFragment{86274b0} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 7 for NavHostFragment{86274b0} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 7 for NavHostFragment{86274b0} (<UUID> id=0x7f080130)
D/FragmentManager: moveto RESUMED: NavHostFragment{86274b0} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 7 for FirstFragment{886440c} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 7 for FirstFragment{886440c} (<UUID> id=0x7f080130)
D/FragmentManager: moveto RESUMED: FirstFragment{886440c} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 7 for FirstFragment{886440c} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 7 for FirstFragment{886440c} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 7 for NavHostFragment{86274b0} (<UUID> id=0x7f080130)
V/FragmentManager: computeExpectedState() of 7 for NavHostFragment{86274b0} (<UUID> id=0x7f080130)

Esse exemplo abrange apenas o carregamento no FirstFragment. Incluir a transição para SecondFragment aumenta consideravelmente as entradas de registro. Muitas das mensagens de registro de nível VERBOSE são pouco úteis para desenvolvedores de apps. No entanto, verificar quando ocorrem as mudanças na backstack pode ajudar a depurar alguns problemas.

StrictMode para fragmentos

As versões 1.4.0 e mais recentes da biblioteca Jetpack Fragment incluem o StrictMode para fragmentos. Ele detecta alguns problemas comuns que podem fazer com que o app se comporte de maneiras inesperadas. Para mais informações sobre como trabalhar com o StrictMode, consulte a página dele.

Uma Policy personalizada define quais violações são detectadas e especifica qual penalidade é aplicada quando a detecção ocorre.

Para aplicar uma política StrictMode personalizada, é necessário que ela seja atribuída ao FragmentManager. Faça a atribuição o quanto antes. Nesse caso, isso é feito em um bloco init ou no construtor Java:

Kotlin

class ExampleActivity : AppCompatActivity() {

    init {
        supportFragmentManager.strictModePolicy =
            FragmentStrictMode.Policy.Builder()
                .penaltyDeath()
                .detectFragmentReuse()
                .allowViolation(FirstFragment::class.java,
                                FragmentReuseViolation::class.java)
                .build()
    }

    override fun onCreate(savedInstanceState: Bundle?) {
        super.onCreate(savedInstanceState)

        val binding = ActivityExampleBinding.inflate(layoutInflater)
        setContentView(binding.root)
        ...
   }
}

Java

class ExampleActivity extends AppCompatActivity() {

    ExampleActivity() {
        getSupportFragmentManager().setStrictModePolicy(
                new FragmentStrictMode.Policy.Builder()
                        .penaltyDeath()
                        .detectFragmentReuse()
                        .allowViolation(FirstFragment.class,
                                        FragmentReuseViolation.class)
                        .build()
        );
    }

    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState)

        ActivityExampleBinding binding =
            ActivityExampleBinding.inflate(getLayoutInflater());
        setContentView(binding.getRoot());
        ...
   }
}

Nos casos em que você precisa conhecer o Context para determinar se o StrictMode será ou não ativado, por exemplo, com o valor de um recurso booleano, é possível adiar a atribuição de uma política StrictMode para o FragmentManager usando um OnContextAvailableListener:

Kotlin

class ExampleActivity : AppCompatActivity() {

    init {
        addOnContextAvailableListener { context ->
            if(context.resources.getBoolean(R.bool.enable_strict_mode)) {
                supportFragmentManager.strictModePolicy = FragmentStrictMode.Policy.Builder()
                    .penaltyDeath()
                    .detectFragmentReuse()
                    .allowViolation(FirstFragment::class.java, FragmentReuseViolation::class.java)
                    .build()
            }
        }
    }

    override fun onCreate(savedInstanceState: Bundle?) {
        super.onCreate(savedInstanceState)

        val binding = ActivityExampleBinding.inflate(layoutInflater)
        setContentView(binding.root)
        ...
   }
}

Java

class ExampleActivity extends AppCompatActivity() {

    ExampleActivity() {
        addOnContextAvailableListener((context) -> {
            if(context.getResources().getBoolean(R.bool.enable_strict_mode)) {
                getSupportFragmentManager().setStrictModePolicy(
                        new FragmentStrictMode.Policy.Builder()
                                .penaltyDeath()
                                .detectFragmentReuse()
                                .allowViolation(FirstFragment.class, FragmentReuseViolation.class)
                                .build()
                );
            }
        }
    }

    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState)

        ActivityExampleBinding binding = ActivityExampleBinding.inflate(getLayoutInflater());
        setContentView(binding.getRoot());
        ...
   }
}

O ponto mais recente em que é possível configurar o StrictMode para captar todas as violações possíveis está no onCreate(), antes da chamada para super.onCreate():

Kotlin

class ExampleActivity : AppCompatActivity() {

    override fun onCreate(savedInstanceState: Bundle?) {
        supportFragmentManager.strictModePolicy = FragmentStrictMode.Policy.Builder()
            .penaltyDeath()
            .detectFragmentReuse()
            .allowViolation(FirstFragment::class.java, FragmentReuseViolation::class.java)
            .build()

        super.onCreate(savedInstanceState)

        val binding = ActivityExampleBinding.inflate(layoutInflater)
        setContentView(binding.root)
        ...
   }
}

Java

class ExampleActivity extends AppCompatActivity() {

    @Override
    protected void onCreate(Bundle savedInstanceState) {
        getSupportFragmentManager().setStrictModePolicy(
                new FragmentStrictMode.Policy.Builder()
                        .penaltyDeath()
                        .detectFragmentReuse()
                        .allowViolation(FirstFragment.class, FragmentReuseViolation.class)
                        .build()
                );

        super.onCreate(savedInstanceState)

        ActivityExampleBinding binding = ActivityExampleBinding.inflate(getLayoutInflater());
        setContentView(binding.getRoot());
        ...
   }
}

A política usada nesses exemplos detecta apenas violações de reutilização de fragmento, e o app é encerrado sempre que elas ocorrem. O penaltyDeath() pode ser útil em builds de depuração porque ele falha rápido o suficiente para que você não ignore violações.

Também é possível autorizar seletivamente violações específicas. No entanto, a política usada no exemplo anterior aplica essa violação a todos os outros tipos de fragmento. Isso é útil nos casos em que um componente de biblioteca de terceiros pode conter violações do StrictMode.

Nesses casos, você pode adicionar temporariamente essas violações à lista de permissões do StrictMode para componentes que não pertencem a você até que a biblioteca corrija a violação.

Para saber como configurar outras violações, consulte a documentação de FragmentStrictMode.Policy.Builder.

Há três tipos de penalidade.

  • penaltyLog() despeja detalhes de violações no Logcat.
  • penaltyDeath() encerra o app quando as violações são detectadas.
  • penaltyListener() permite adicionar um listener personalizado que é chamado sempre que violações são detectadas.

Você pode aplicar qualquer combinação de penalidades na sua Policy. Se a política não especificar explicitamente uma penalidade, um padrão penaltyLog() será aplicado. Se você aplicar uma penalidade diferente de penaltyLog() na sua Policy personalizada, o penaltyLog() será desativado, a menos que você o defina explicitamente.

O penaltyListener() pode ser útil quando você tem uma biblioteca de registros de terceiros na qual quer registrar violações. Como alternativa, você pode ativar a detecção de violações não fatais em builds de lançamento e registrá-las em uma biblioteca de relatórios de erros. Essa estratégia pode detectar violações que seriam perdidas.

Para definir uma política global StrictMode, defina uma política padrão que se aplique a todas as instâncias do FragmentManager usando o método FragmentStrictMode.setDefaultPolicy():

Kotlin

class MyApplication : Application() {

    override fun onCreate() {
        super.onCreate()

        FragmentStrictMode.defaultPolicy =
            FragmentStrictMode.Policy.Builder()
                .detectFragmentReuse()
                .detectFragmentTagUsage()
                .detectRetainInstanceUsage()
                .detectSetUserVisibleHint()
                .detectTargetFragmentUsage()
                .detectWrongFragmentContainer()
                .apply {
                    if (BuildConfig.DEBUG) {
                        // Fail early on DEBUG builds
                        penaltyDeath()
                    } else {
                        // Log to Crashlytics on RELEASE builds
                        penaltyListener {
                            FirebaseCrashlytics.getInstance().recordException(it)
                        }
                    }
                }
                .build()
    }
}

Java

public class MyApplication extends Application {

    @Override
    public void onCreate() {
        super.onCreate();

        FragmentStrictMode.Policy.Builder builder = new FragmentStrictMode.Policy.Builder();
        builder.detectFragmentReuse()
                .detectFragmentTagUsage()
                .detectRetainInstanceUsage()
                .detectSetUserVisibleHint()
                .detectTargetFragmentUsage()
                .detectWrongFragmentContainer();
        if (BuildConfig.DEBUG) {
            // Fail early on DEBUG builds
            builder.penaltyDeath();
        } else {
            // Log to Crashlytics on RELEASE builds
            builder.penaltyListener((exception) ->
                    FirebaseCrashlytics.getInstance().recordException(exception)
            );
        }
        FragmentStrictMode.setDefaultPolicy(builder.build());
    }
}

As seções a seguir descrevem os tipos de violação e possíveis soluções.

Reutilizar fragmentos

A violação de reutilização de fragmento é ativada usando detectFragmentReuse() e gera uma FragmentReuseViolation.

Essa violação indica a reutilização de uma instância do Fragment após a remoção dele do FragmentManager. Essa reutilização pode causar problemas, porque o Fragment pode reter o estado do uso anterior e não se comportar de forma consistente. Se você criar uma nova instância todas as vezes, ela estará sempre no estado inicial quando adicionada ao FragmentManager.

Uso de tags de fragmento

A violação de uso da tag de fragmento é ativada usando detectFragmentTagUsage() e gera uma FragmentTagUsageViolation.

Essa violação indica que um Fragment é inflado usando a tag <fragment> em um layout XML. Para resolver isso, infle seu Fragment dentro de <androidx.fragment.app.FragmentContainerView> em vez de usar a tag <fragment>. Fragmentos inflados com uma FragmentContainerView lidam com transações de Fragment e mudanças de configuração de maneira confiável. Eles podem não funcionar como esperado se você usar a tag <fragment>.

Uso da instância de retenção

A violação de uso da instância de retenção é ativada com detectRetainInstanceUsage() e gera uma RetainInstanceUsageViolation.

Essa violação indica o uso de um Fragment retido, principalmente se houver chamadas para setRetainInstance() ou getRetainInstance(), ambos descontinuados.

Em vez de usar esses métodos para gerenciar instâncias Fragment retidas por conta própria, armazene o estado em um ViewModel que faça isso para você.

Definir dica visível para o usuário

A violação de definição de uma dica visível ao usuário é ativada usando detectSetUserVisibleHint() e gera uma SetUserVisibleHintViolation.

Essa violação indica uma chamada para setUserVisibleHint(), que foi descontinuado.

Se você estiver chamando esse método manualmente, chame setMaxLifecycle(). Se você substituir esse método, mova o comportamento para onResume() ao transmitir true e onPause() ao transmitir false.

Uso do fragmento de destino

A violação de uso do fragmento de destino é ativada usando detectTargetFragmentUsage() e gera uma TargetFragmentUsageViolation.

Essa violação indica uma chamada para setTargetFragment(), getTargetFragment() ou getTargetRequestCode(), que foram descontinuados. Em vez de usar esses métodos, registre um FragmentResultListener. Para mais informações sobre a transmissão de resultados, consulte Transmitir resultados entre fragmentos.

Contêiner de fragmentos incorreto

A violação de contêiner de fragmento incorreto é ativada usando detectWrongFragmentContainer() e gera uma WrongFragmentContainerViolation.

Essa violação indica a adição de um Fragment a um contêiner diferente de FragmentContainerView. Assim como no uso de tags Fragment, as transações de fragmentos podem não funcionar como esperado, a menos que hospedadas em um FragmentContainerView. Usar uma visualização de contêiner também ajuda a resolver um problema na API View que faz com que fragmentos que usam animações de saída sejam desenhados sobre todos os outros.