تحويل المخرجات
تنظيم صفحاتك في مجموعات
يمكنك حفظ المحتوى وتصنيفه حسب إعداداتك المفضّلة.
يتضمّن ناتج حالة استخدام CameraX جزأين: المخزن المؤقت ومعلومات التحويل. المخزن المؤقت هو مصفوفة بايت، ومعلومات التحويل هي كيفية اقتصاص المخزن المؤقت وتدويره قبل عرضه على المستخدمين النهائيين. تعتمد طريقة تطبيق عملية التحويل على تنسيق المخزن المؤقت.
ImageCapture
بالنسبة إلى حالة الاستخدام ImageCapture
، يتم تطبيق مخزن مؤقت لمستطيل الاقتصاص قبل الحفظ على القرص، ويتم حفظ عملية التدوير في بيانات Exif. ليس على التطبيق اتخاذ أي إجراء إضافي.
معاينة
بالنسبة إلى حالة الاستخدام Preview
، يمكنك الحصول على معلومات التحويل من خلال استدعاء SurfaceRequest.setTransformationInfoListener()
.
في كل مرة يتم فيها تعديل عملية التحويل، يتلقّى المتصل كائن SurfaceRequest.TransformationInfo
جديدًا.
تعتمد طريقة تطبيق معلومات التحويل على مصدر
Surface
، وعادةً ما تكون غير بسيطة. إذا كان الهدف هو عرض المعاينة فقط، استخدِم PreviewView
. PreviewView
هو عرض مخصّص يتعامل تلقائيًا مع عملية التحويل. للاستخدامات المتقدّمة، عندما تحتاج إلى تعديل معاينة البث، مثلاً باستخدام OpenGL، اطّلِع على نموذج الرمز البرمجي في تطبيق اختبار CameraX الأساسي.
تحويل الإحداثيات
هناك مهمة شائعة أخرى وهي العمل باستخدام الإحداثيات بدلاً من المخزن المؤقت، مثل رسم مربّع حول الوجه الذي تم رصده في المعاينة. في حالات مثل هذه، عليك تحويل إحداثيات الوجه الذي تم رصده من تحليل الصورة إلى المعاينة.
ينشئ مقتطف الرمز التالي مصفوفة تربط بين إحداثيات تحليل الصور وإحداثيات PreviewView
. لتحويل إحداثيات (x, y) باستخدام Matrix
، راجِع Matrix.mapPoints()
.
Kotlin
fun getCorrectionMatrix(imageProxy: ImageProxy, previewView: PreviewView) : Matrix {
val cropRect = imageProxy.cropRect
val rotationDegrees = imageProxy.imageInfo.rotationDegrees
val matrix = Matrix()
// A float array of the source vertices (crop rect) in clockwise order.
val source = floatArrayOf(
cropRect.left.toFloat(),
cropRect.top.toFloat(),
cropRect.right.toFloat(),
cropRect.top.toFloat(),
cropRect.right.toFloat(),
cropRect.bottom.toFloat(),
cropRect.left.toFloat(),
cropRect.bottom.toFloat()
)
// A float array of the destination vertices in clockwise order.
val destination = floatArrayOf(
0f,
0f,
previewView.width.toFloat(),
0f,
previewView.width.toFloat(),
previewView.height.toFloat(),
0f,
previewView.height.toFloat()
)
// The destination vertexes need to be shifted based on rotation degrees. The
// rotation degree represents the clockwise rotation needed to correct the image.
// Each vertex is represented by 2 float numbers in the vertices array.
val vertexSize = 2
// The destination needs to be shifted 1 vertex for every 90° rotation.
val shiftOffset = rotationDegrees / 90 * vertexSize;
val tempArray = destination.clone()
for (toIndex in source.indices) {
val fromIndex = (toIndex + shiftOffset) % source.size
destination[toIndex] = tempArray[fromIndex]
}
matrix.setPolyToPoly(source, 0, destination, 0, 4)
return matrix
}
Java
Matrix getMappingMatrix(ImageProxy imageProxy, PreviewView previewView) {
Rect cropRect = imageProxy.getCropRect();
int rotationDegrees = imageProxy.getImageInfo().getRotationDegrees();
Matrix matrix = new Matrix();
// A float array of the source vertices (crop rect) in clockwise order.
float[] source = {
cropRect.left,
cropRect.top,
cropRect.right,
cropRect.top,
cropRect.right,
cropRect.bottom,
cropRect.left,
cropRect.bottom
};
// A float array of the destination vertices in clockwise order.
float[] destination = {
0f,
0f,
previewView.getWidth(),
0f,
previewView.getWidth(),
previewView.getHeight(),
0f,
previewView.getHeight()
};
// The destination vertexes need to be shifted based on rotation degrees.
// The rotation degree represents the clockwise rotation needed to correct
// the image.
// Each vertex is represented by 2 float numbers in the vertices array.
int vertexSize = 2;
// The destination needs to be shifted 1 vertex for every 90° rotation.
int shiftOffset = rotationDegrees / 90 * vertexSize;
float[] tempArray = destination.clone();
for (int toIndex = 0; toIndex < source.length; toIndex++) {
int fromIndex = (toIndex + shiftOffset) % source.length;
destination[toIndex] = tempArray[fromIndex];
}
matrix.setPolyToPoly(source, 0, destination, 0, 4);
return matrix;
}
يخضع كل من المحتوى وعيّنات التعليمات البرمجية في هذه الصفحة للتراخيص الموضحّة في ترخيص استخدام المحتوى. إنّ Java وOpenJDK هما علامتان تجاريتان مسجَّلتان لشركة Oracle و/أو الشركات التابعة لها.
تاريخ التعديل الأخير: 2025-08-27 (حسب التوقيت العالمي المتفَّق عليه)
[[["يسهُل فهم المحتوى.","easyToUnderstand","thumb-up"],["ساعَدني المحتوى في حلّ مشكلتي.","solvedMyProblem","thumb-up"],["غير ذلك","otherUp","thumb-up"]],[["لا يحتوي على المعلومات التي أحتاج إليها.","missingTheInformationINeed","thumb-down"],["الخطوات معقدة للغاية / كثيرة جدًا.","tooComplicatedTooManySteps","thumb-down"],["المحتوى قديم.","outOfDate","thumb-down"],["ثمة مشكلة في الترجمة.","translationIssue","thumb-down"],["مشكلة في العيّنات / التعليمات البرمجية","samplesCodeIssue","thumb-down"],["غير ذلك","otherDown","thumb-down"]],["تاريخ التعديل الأخير: 2025-08-27 (حسب التوقيت العالمي المتفَّق عليه)"],[],[],null,["# Transform output\n\nThe output of a CameraX use case is twofold: the buffer and the transformation\ninfo. The buffer is a byte array and the transformation info is how the buffer\nshould be cropped and rotated before being shown to end users. How to apply the\ntransformation depends on the format of the buffer.\n\nImageCapture\n------------\n\nFor the `ImageCapture` use case, the crop rect buffer is applied before saving\nto disk and the rotation is saved in the Exif data. There is no additional\naction needed from the app.\n\nPreview\n-------\n\nFor the `Preview` use case, you can get the transformation information by\ncalling\n[`SurfaceRequest.setTransformationInfoListener()`](/reference/androidx/camera/core/SurfaceRequest#setTransformationInfoListener(java.util.concurrent.Executor,%20androidx.camera.core.SurfaceRequest.TransformationInfoListener)).\nEvery time the transformation is updated, the caller receives a new\n[`SurfaceRequest.TransformationInfo`](/reference/androidx/camera/core/SurfaceRequest.TransformationInfo)\nobject.\n\nHow to apply the transformation information depends on the source of the\n`Surface`, and is usually non-trivial. If the goal is to simply display the\npreview, use `PreviewView`. `PreviewView` is a custom view that automatically\nhandles transformation. For advanced uses, when you need to edit the preview\nstream, such as with OpenGL, look at the code sample in the [CameraX core test\napp](https://android.googlesource.com/platform/frameworks/support/+/refs/heads/androidx-main/camera/integration-tests/coretestapp/src/main/java/androidx/camera/integration/core).\n\nTransform coordinates\n---------------------\n\nAnother common task is to work with the coordinates instead of the buffer, such\nas drawing a box around the detected face in preview. In cases such as this, you\nneed to transform the coordinates of the detected face from image analysis to\npreview.\n\nThe following code snippet creates a matrix that maps from image analysis\ncoordinates to `PreviewView` coordinates. To transform the (x, y) coordinates\nwith a [`Matrix`](/reference/android/graphics/Matrix), see\n[`Matrix.mapPoints()`](/reference/android/graphics/Matrix#mapPoints(float%5B%5D)). \n\n### Kotlin\n\n```kotlin\nfun getCorrectionMatrix(imageProxy: ImageProxy, previewView: PreviewView) : Matrix {\n val cropRect = imageProxy.cropRect\n val rotationDegrees = imageProxy.imageInfo.rotationDegrees\n val matrix = Matrix()\n\n // A float array of the source vertices (crop rect) in clockwise order.\n val source = floatArrayOf(\n cropRect.left.toFloat(),\n cropRect.top.toFloat(),\n cropRect.right.toFloat(),\n cropRect.top.toFloat(),\n cropRect.right.toFloat(),\n cropRect.bottom.toFloat(),\n cropRect.left.toFloat(),\n cropRect.bottom.toFloat()\n )\n\n // A float array of the destination vertices in clockwise order.\n val destination = floatArrayOf(\n 0f,\n 0f,\n previewView.width.toFloat(),\n 0f,\n previewView.width.toFloat(),\n previewView.height.toFloat(),\n 0f,\n previewView.height.toFloat()\n )\n\n // The destination vertexes need to be shifted based on rotation degrees. The\n // rotation degree represents the clockwise rotation needed to correct the image.\n\n // Each vertex is represented by 2 float numbers in the vertices array.\n val vertexSize = 2\n // The destination needs to be shifted 1 vertex for every 90° rotation.\n val shiftOffset = rotationDegrees / 90 * vertexSize;\n val tempArray = destination.clone()\n for (toIndex in source.indices) {\n val fromIndex = (toIndex + shiftOffset) % source.size\n destination[toIndex] = tempArray[fromIndex]\n }\n matrix.setPolyToPoly(source, 0, destination, 0, 4)\n return matrix\n}\n```\n\n### Java\n\n```java\nMatrix getMappingMatrix(ImageProxy imageProxy, PreviewView previewView) {\n Rect cropRect = imageProxy.getCropRect();\n int rotationDegrees = imageProxy.getImageInfo().getRotationDegrees();\n Matrix matrix = new Matrix();\n\n // A float array of the source vertices (crop rect) in clockwise order.\n float[] source = {\n cropRect.left,\n cropRect.top,\n cropRect.right,\n cropRect.top,\n cropRect.right,\n cropRect.bottom,\n cropRect.left,\n cropRect.bottom\n };\n\n // A float array of the destination vertices in clockwise order.\n float[] destination = {\n 0f,\n 0f,\n previewView.getWidth(),\n 0f,\n previewView.getWidth(),\n previewView.getHeight(),\n 0f,\n previewView.getHeight()\n };\n\n // The destination vertexes need to be shifted based on rotation degrees.\n // The rotation degree represents the clockwise rotation needed to correct\n // the image.\n\n // Each vertex is represented by 2 float numbers in the vertices array.\n int vertexSize = 2;\n // The destination needs to be shifted 1 vertex for every 90° rotation.\n int shiftOffset = rotationDegrees / 90 * vertexSize;\n float[] tempArray = destination.clone();\n for (int toIndex = 0; toIndex \u003c source.length; toIndex++) {\n int fromIndex = (toIndex + shiftOffset) % source.length;\n destination[toIndex] = tempArray[fromIndex];\n }\n matrix.setPolyToPoly(source, 0, destination, 0, 4);\n return matrix;\n}\n```"]]