Custom trace events in native code
Stay organized with collections
Save and categorize content based on your preferences.
Android 6.0 (API level 23) and higher support a native tracing API, trace.h
,
to write trace events to the system buffer that you can then analyze using
Perfetto or systrace. Common use cases for this API include observing the time
that a particular block of code takes to execute and associating a block of code
with undesirable system behavior.
Note: On devices and emulators running API level 27 and lower, if there
isn't enough memory available or the memory is too fragmented, you'll get the
following message: Atrace could not allocate enough memory to record a trace
.
If this happens and your capture does not have a complete set of data, then you
should close background processes or restart the device or emulator.
To define custom events that occur in the native code within your app or game,
complete the following steps:
Define function pointers for the ATrace functions that you use to
capture custom events within your app or game, as shown in the following code
snippet:
#include <android/trace.h>
#include <dlfcn.h>
void *(*ATrace_beginSection) (const char* sectionName);
void *(*ATrace_endSection) (void);
typedef void *(*fp_ATrace_beginSection) (const char* sectionName);
typedef void *(*fp_ATrace_endSection) (void);
Load the ATrace symbols at runtime, as shown in the following code
snippet. Usually, you perform this process in an object constructor.
// Retrieve a handle to libandroid.
void *lib = dlopen("libandroid.so", RTLD_NOW | RTLD_LOCAL);
// Access the native tracing functions.
if (lib != NULL) {
// Use dlsym() to prevent crashes on devices running Android 5.1
// (API level 22) or lower.
ATrace_beginSection = reinterpret_cast<fp_ATrace_beginSection>(
dlsym(lib, "ATrace_beginSection"));
ATrace_endSection = reinterpret_cast<fp_ATrace_endSection>(
dlsym(lib, "ATrace_endSection"));
}
Caution: For security reasons, include calls to
dlopen()
only in the debug version of your app or game.
Note: To provide tracing support further back to
Android 4.3 (API level 18), you can use JNI to call the methods in
managed code around the code shown in the
preceding snippet.
Call ATrace_beginSection()
and
ATrace_endSection()
at the beginning and end, respectively, of
your custom event:
#include <android/trace.h>
char *customEventName = new char[32];
sprintf(customEventName, "User tapped %s button", buttonName);
ATrace_beginSection(customEventName);
// Your app or game's response to the button being pressed.
ATrace_endSection();
Note: When you call ATrace_beginSection()
multiple
times, calling ATrace_endSection()
ends only the most
recently called ATrace_beginSection()
method. So, for nested
calls, make sure that you properly match each call to
ATrace_beginSection()
with a call to
ATrace_endSection()
.
Additionally, you cannot call ATrace_beginSection()
on one
thread and end it from another. You must call both functions from the same
thread.
Convenience tips
The following tips are optional but might make it easier to analyze your native
code.
Trace an entire function
When instrumenting your call stack or function timing, you might find it useful
to trace entire functions. You can use the ATRACE_CALL()
macro to make this
type of tracing easier to set up. Furthermore, such a macro allows you to skip
creating try
and catch
blocks for cases where the traced function might
throw an exception or call return
early.
To create a macro for tracing an entire function, complete the following steps:
Define the macro:
#define ATRACE_NAME(name) ScopedTrace ___tracer(name)
// ATRACE_CALL is an ATRACE_NAME that uses the current function name.
#define ATRACE_CALL() ATRACE_NAME(__FUNCTION__)
class ScopedTrace {
public:
inline ScopedTrace(const char *name) {
ATrace_beginSection(name);
}
inline ~ScopedTrace() {
ATrace_endSection();
}
};
Call the macro within the function that you want to trace:
void myExpensiveFunction() {
ATRACE_CALL();
// Code that you want to trace.
}
Name your threads
You can give a name to each thread in which your events occur, as demonstrated
in the following code snippet. This step makes it easier to identify the threads
that belong to specific actions within your game.
#include <pthread.h>
static void *render_scene(void *parm) {
// Code for preparing your app or game's visual components.
}
static void *load_main_menu(void *parm) {
// Code that executes your app or game's main logic.
}
void init_threads() {
pthread_t render_thread, main_thread;
pthread_create(&render_thread, NULL, render_scene, NULL);
pthread_create(&main_thread, NULL, load_main_menu, NULL);
pthread_setname_np(render_thread, "MyRenderer");
pthread_setname_np(main_thread, "MyMainMenu");
}
Recommended for you
Content and code samples on this page are subject to the licenses described in the Content License. Java and OpenJDK are trademarks or registered trademarks of Oracle and/or its affiliates.
Last updated 2024-05-03 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2024-05-03 UTC."],[],[],null,["# Custom trace events in native code\n\nAndroid 6.0 (API level 23) and higher support a native tracing API, `trace.h`,\nto write trace events to the system buffer that you can then analyze using\nPerfetto or systrace. Common use cases for this API include observing the time\nthat a particular block of code takes to execute and associating a block of code\nwith undesirable system behavior.\n\n**Note:** On devices and emulators running API level 27 and lower, if there\nisn't enough memory available or the memory is too fragmented, you'll get the\nfollowing message: `Atrace could not allocate enough memory to record a trace`.\nIf this happens and your capture does not have a complete set of data, then you\nshould close background processes or restart the device or emulator.\n\nTo define custom events that occur in the native code within your app or game,\ncomplete the following steps:\n\n1. Define function pointers for the ATrace functions that you use to\n capture custom events within your app or game, as shown in the following code\n snippet:\n\n ```c++\n #include \u003candroid/trace.h\u003e\n #include \u003cdlfcn.h\u003e\n\n void *(*ATrace_beginSection) (const char* sectionName);\n void *(*ATrace_endSection) (void);\n\n typedef void *(*fp_ATrace_beginSection) (const char* sectionName);\n typedef void *(*fp_ATrace_endSection) (void);\n ```\n2. Load the ATrace symbols at runtime, as shown in the following code\n snippet. Usually, you perform this process in an object constructor.\n\n ```c++\n // Retrieve a handle to libandroid.\n void *lib = dlopen(\"libandroid.so\", RTLD_NOW | RTLD_LOCAL);\n\n // Access the native tracing functions.\n if (lib != NULL) {\n // Use dlsym() to prevent crashes on devices running Android 5.1\n // (API level 22) or lower.\n ATrace_beginSection = reinterpret_cast\u003cfp_ATrace_beginSection\u003e(\n dlsym(lib, \"ATrace_beginSection\"));\n ATrace_endSection = reinterpret_cast\u003cfp_ATrace_endSection\u003e(\n dlsym(lib, \"ATrace_endSection\"));\n }\n ```\n\n **Caution:** For security reasons, include calls to\n `dlopen()` only in the debug version of your app or game.\n\n **Note:** To provide tracing support further back to\n Android 4.3 (API level 18), you can use JNI to call the methods in\n [managed code](#managed-code) around the code shown in the\n preceding snippet.\n3. Call `ATrace_beginSection()` and\n `ATrace_endSection()` at the beginning and end, respectively, of\n your custom event:\n\n ```c++\n #include \u003candroid/trace.h\u003e\n\n char *customEventName = new char[32];\n sprintf(customEventName, \"User tapped %s button\", buttonName);\n\n ATrace_beginSection(customEventName);\n // Your app or game's response to the button being pressed.\n ATrace_endSection();\n ``` \n **Note:** When you call `ATrace_beginSection()` multiple\n times, calling `ATrace_endSection()` ends only the most\n recently called `ATrace_beginSection()` method. So, for nested\n calls, make sure that you properly match each call to\n `ATrace_beginSection()` with a call to\n `ATrace_endSection()`.\n\n Additionally, you cannot call `ATrace_beginSection()` on one\n thread and end it from another. You must call both functions from the same\n thread.\n\nConvenience tips\n================\n\nThe following tips are optional but might make it easier to analyze your native\ncode.\n\nTrace an entire function\n------------------------\n\nWhen instrumenting your call stack or function timing, you might find it useful\nto trace entire functions. You can use the `ATRACE_CALL()` macro to make this\ntype of tracing easier to set up. Furthermore, such a macro allows you to skip\ncreating `try` and `catch` blocks for cases where the traced function might\nthrow an exception or call `return` early.\n\nTo create a macro for tracing an entire function, complete the following steps:\n\n1. Define the macro:\n\n ```c++\n #define ATRACE_NAME(name) ScopedTrace ___tracer(name)\n\n // ATRACE_CALL is an ATRACE_NAME that uses the current function name.\n #define ATRACE_CALL() ATRACE_NAME(__FUNCTION__)\n\n class ScopedTrace {\n public:\n inline ScopedTrace(const char *name) {\n ATrace_beginSection(name);\n }\n\n inline ~ScopedTrace() {\n ATrace_endSection();\n }\n };\n ```\n2. Call the macro within the function that you want to trace:\n\n ```c++\n void myExpensiveFunction() {\n ATRACE_CALL();\n // Code that you want to trace.\n }\n ```\n\nName your threads\n-----------------\n\nYou can give a name to each thread in which your events occur, as demonstrated\nin the following code snippet. This step makes it easier to identify the threads\nthat belong to specific actions within your game. \n\n```c++\n#include \u003cpthread.h\u003e\n\nstatic void *render_scene(void *parm) {\n // Code for preparing your app or game's visual components.\n}\n\nstatic void *load_main_menu(void *parm) {\n // Code that executes your app or game's main logic.\n}\n\nvoid init_threads() {\n pthread_t render_thread, main_thread;\n\n pthread_create(&render_thread, NULL, render_scene, NULL);\n pthread_create(&main_thread, NULL, load_main_menu, NULL);\n\n pthread_setname_np(render_thread, \"MyRenderer\");\n pthread_setname_np(main_thread, \"MyMainMenu\");\n}\n```\n\nRecommended for you\n-------------------\n\n- Note: link text is displayed when JavaScript is off\n- [Best practices for SQLite performance](/topic/performance/sqlite-performance-best-practices)\n- [Create and measure Baseline Profiles without Macrobenchmark](/topic/performance/baselineprofiles/manually-create-measure)"]]