Saída de transformação
Mantenha tudo organizado com as coleções
Salve e categorize o conteúdo com base nas suas preferências.
A saída de um caso de uso do CameraX é ambivalente: o buffer e as informações
de transformação. O buffer é uma matriz de bytes, e as informações de transformação são o modo como o buffer
precisa ser cortado e girado antes de ser mostrado aos usuários finais. A maneira de aplicar a
transformação depende do formato do buffer.
ImageCapture
Para o caso de uso de ImageCapture
, o buffer de retângulo cortado é aplicado antes de salvar
no disco, e a rotação é salva nos dados EXIF. Nenhuma outra
ação é necessária no app.
Visualização
Para o caso de uso de Preview
, é possível conseguir as informações de transformação
chamando
SurfaceRequest.setTransformationInfoListener()
.
Toda vez que a transformação é atualizada, o autor da chamada recebe um novo
objeto
SurfaceRequest.TransformationInfo
.
A maneira de aplicar as informações de transformação depende da origem de
Surface
e normalmente não é trivial. Use PreviewView
se o objetivo for simplesmente
exibir a visualização. PreviewView
é uma visualização personalizada que processa
automaticamente a transformação. Para usos avançados, quando você precisar editar o stream
de visualização, como com o OpenGL, veja o exemplo de código no app de teste principal
do CameraX.
Coordenadas de transformação
Outra tarefa comum é trabalhar com as coordenadas em vez do buffer, como
desenhar uma caixa em torno do rosto detectado na visualização. Nesses casos, é
preciso transformar as coordenadas do rosto detectado da análise de imagem para
a visualização.
O snippet de código a seguir cria uma matriz que mapeia de coordenadas de análise
de imagem para coordenadas PreviewView
. Para transformar as coordenadas (x, y)
com uma Matrix
, consulte
Matrix.mapPoints()
.
Kotlin
fun getCorrectionMatrix(imageProxy: ImageProxy, previewView: PreviewView) : Matrix {
val cropRect = imageProxy.cropRect
val rotationDegrees = imageProxy.imageInfo.rotationDegrees
val matrix = Matrix()
// A float array of the source vertices (crop rect) in clockwise order.
val source = floatArrayOf(
cropRect.left.toFloat(),
cropRect.top.toFloat(),
cropRect.right.toFloat(),
cropRect.top.toFloat(),
cropRect.right.toFloat(),
cropRect.bottom.toFloat(),
cropRect.left.toFloat(),
cropRect.bottom.toFloat()
)
// A float array of the destination vertices in clockwise order.
val destination = floatArrayOf(
0f,
0f,
previewView.width.toFloat(),
0f,
previewView.width.toFloat(),
previewView.height.toFloat(),
0f,
previewView.height.toFloat()
)
// The destination vertexes need to be shifted based on rotation degrees. The
// rotation degree represents the clockwise rotation needed to correct the image.
// Each vertex is represented by 2 float numbers in the vertices array.
val vertexSize = 2
// The destination needs to be shifted 1 vertex for every 90° rotation.
val shiftOffset = rotationDegrees / 90 * vertexSize;
val tempArray = destination.clone()
for (toIndex in source.indices) {
val fromIndex = (toIndex + shiftOffset) % source.size
destination[toIndex] = tempArray[fromIndex]
}
matrix.setPolyToPoly(source, 0, destination, 0, 4)
return matrix
}
Java
Matrix getMappingMatrix(ImageProxy imageProxy, PreviewView previewView) {
Rect cropRect = imageProxy.getCropRect();
int rotationDegrees = imageProxy.getImageInfo().getRotationDegrees();
Matrix matrix = new Matrix();
// A float array of the source vertices (crop rect) in clockwise order.
float[] source = {
cropRect.left,
cropRect.top,
cropRect.right,
cropRect.top,
cropRect.right,
cropRect.bottom,
cropRect.left,
cropRect.bottom
};
// A float array of the destination vertices in clockwise order.
float[] destination = {
0f,
0f,
previewView.getWidth(),
0f,
previewView.getWidth(),
previewView.getHeight(),
0f,
previewView.getHeight()
};
// The destination vertexes need to be shifted based on rotation degrees.
// The rotation degree represents the clockwise rotation needed to correct
// the image.
// Each vertex is represented by 2 float numbers in the vertices array.
int vertexSize = 2;
// The destination needs to be shifted 1 vertex for every 90° rotation.
int shiftOffset = rotationDegrees / 90 * vertexSize;
float[] tempArray = destination.clone();
for (int toIndex = 0; toIndex < source.length; toIndex++) {
int fromIndex = (toIndex + shiftOffset) % source.length;
destination[toIndex] = tempArray[fromIndex];
}
matrix.setPolyToPoly(source, 0, destination, 0, 4);
return matrix;
}
O conteúdo e os exemplos de código nesta página estão sujeitos às licenças descritas na Licença de conteúdo. Java e OpenJDK são marcas registradas da Oracle e/ou suas afiliadas.
Última atualização 2025-08-27 UTC.
[[["Fácil de entender","easyToUnderstand","thumb-up"],["Meu problema foi resolvido","solvedMyProblem","thumb-up"],["Outro","otherUp","thumb-up"]],[["Não contém as informações de que eu preciso","missingTheInformationINeed","thumb-down"],["Muito complicado / etapas demais","tooComplicatedTooManySteps","thumb-down"],["Desatualizado","outOfDate","thumb-down"],["Problema na tradução","translationIssue","thumb-down"],["Problema com as amostras / o código","samplesCodeIssue","thumb-down"],["Outro","otherDown","thumb-down"]],["Última atualização 2025-08-27 UTC."],[],[],null,["# Transform output\n\nThe output of a CameraX use case is twofold: the buffer and the transformation\ninfo. The buffer is a byte array and the transformation info is how the buffer\nshould be cropped and rotated before being shown to end users. How to apply the\ntransformation depends on the format of the buffer.\n\nImageCapture\n------------\n\nFor the `ImageCapture` use case, the crop rect buffer is applied before saving\nto disk and the rotation is saved in the Exif data. There is no additional\naction needed from the app.\n\nPreview\n-------\n\nFor the `Preview` use case, you can get the transformation information by\ncalling\n[`SurfaceRequest.setTransformationInfoListener()`](/reference/androidx/camera/core/SurfaceRequest#setTransformationInfoListener(java.util.concurrent.Executor,%20androidx.camera.core.SurfaceRequest.TransformationInfoListener)).\nEvery time the transformation is updated, the caller receives a new\n[`SurfaceRequest.TransformationInfo`](/reference/androidx/camera/core/SurfaceRequest.TransformationInfo)\nobject.\n\nHow to apply the transformation information depends on the source of the\n`Surface`, and is usually non-trivial. If the goal is to simply display the\npreview, use `PreviewView`. `PreviewView` is a custom view that automatically\nhandles transformation. For advanced uses, when you need to edit the preview\nstream, such as with OpenGL, look at the code sample in the [CameraX core test\napp](https://android.googlesource.com/platform/frameworks/support/+/refs/heads/androidx-main/camera/integration-tests/coretestapp/src/main/java/androidx/camera/integration/core).\n\nTransform coordinates\n---------------------\n\nAnother common task is to work with the coordinates instead of the buffer, such\nas drawing a box around the detected face in preview. In cases such as this, you\nneed to transform the coordinates of the detected face from image analysis to\npreview.\n\nThe following code snippet creates a matrix that maps from image analysis\ncoordinates to `PreviewView` coordinates. To transform the (x, y) coordinates\nwith a [`Matrix`](/reference/android/graphics/Matrix), see\n[`Matrix.mapPoints()`](/reference/android/graphics/Matrix#mapPoints(float%5B%5D)). \n\n### Kotlin\n\n```kotlin\nfun getCorrectionMatrix(imageProxy: ImageProxy, previewView: PreviewView) : Matrix {\n val cropRect = imageProxy.cropRect\n val rotationDegrees = imageProxy.imageInfo.rotationDegrees\n val matrix = Matrix()\n\n // A float array of the source vertices (crop rect) in clockwise order.\n val source = floatArrayOf(\n cropRect.left.toFloat(),\n cropRect.top.toFloat(),\n cropRect.right.toFloat(),\n cropRect.top.toFloat(),\n cropRect.right.toFloat(),\n cropRect.bottom.toFloat(),\n cropRect.left.toFloat(),\n cropRect.bottom.toFloat()\n )\n\n // A float array of the destination vertices in clockwise order.\n val destination = floatArrayOf(\n 0f,\n 0f,\n previewView.width.toFloat(),\n 0f,\n previewView.width.toFloat(),\n previewView.height.toFloat(),\n 0f,\n previewView.height.toFloat()\n )\n\n // The destination vertexes need to be shifted based on rotation degrees. The\n // rotation degree represents the clockwise rotation needed to correct the image.\n\n // Each vertex is represented by 2 float numbers in the vertices array.\n val vertexSize = 2\n // The destination needs to be shifted 1 vertex for every 90° rotation.\n val shiftOffset = rotationDegrees / 90 * vertexSize;\n val tempArray = destination.clone()\n for (toIndex in source.indices) {\n val fromIndex = (toIndex + shiftOffset) % source.size\n destination[toIndex] = tempArray[fromIndex]\n }\n matrix.setPolyToPoly(source, 0, destination, 0, 4)\n return matrix\n}\n```\n\n### Java\n\n```java\nMatrix getMappingMatrix(ImageProxy imageProxy, PreviewView previewView) {\n Rect cropRect = imageProxy.getCropRect();\n int rotationDegrees = imageProxy.getImageInfo().getRotationDegrees();\n Matrix matrix = new Matrix();\n\n // A float array of the source vertices (crop rect) in clockwise order.\n float[] source = {\n cropRect.left,\n cropRect.top,\n cropRect.right,\n cropRect.top,\n cropRect.right,\n cropRect.bottom,\n cropRect.left,\n cropRect.bottom\n };\n\n // A float array of the destination vertices in clockwise order.\n float[] destination = {\n 0f,\n 0f,\n previewView.getWidth(),\n 0f,\n previewView.getWidth(),\n previewView.getHeight(),\n 0f,\n previewView.getHeight()\n };\n\n // The destination vertexes need to be shifted based on rotation degrees.\n // The rotation degree represents the clockwise rotation needed to correct\n // the image.\n\n // Each vertex is represented by 2 float numbers in the vertices array.\n int vertexSize = 2;\n // The destination needs to be shifted 1 vertex for every 90° rotation.\n int shiftOffset = rotationDegrees / 90 * vertexSize;\n float[] tempArray = destination.clone();\n for (int toIndex = 0; toIndex \u003c source.length; toIndex++) {\n int fromIndex = (toIndex + shiftOffset) % source.length;\n destination[toIndex] = tempArray[fromIndex];\n }\n matrix.setPolyToPoly(source, 0, destination, 0, 4);\n return matrix;\n}\n```"]]