Resultado de la transformación
Organiza tus páginas con colecciones
Guarda y categoriza el contenido según tus preferencias.
El resultado de un caso de uso de CameraX es doble: el búfer y la información de transformación. El búfer es un array de bytes y la información de transformación es cómo se debe recortar y rotar el búfer antes de mostrarse a los usuarios finales. Cómo debes aplicar la transformación depende del formato del búfer.
ImageCapture
En el caso de uso de ImageCapture
, el búfer de rectángulo de recorte se aplica antes de guardar la imagen en el disco y la rotación se guarda en los datos EXIF. No se requieren acciones adicionales de la app.
Vista previa
Para el caso de uso de Preview
, puedes llamar a SurfaceRequest.setTransformationInfoListener()
a fin de obtener la información de transformación.
Cada vez que se actualiza la transformación, el llamador recibe un objeto SurfaceRequest.TransformationInfo
nuevo.
Cómo debes aplicar la información de transformación depende de la fuente de Surface
y no suele ser trivial. Si el objetivo es simplemente mostrar la vista previa, usa PreviewView
. PreviewView
es una vista personalizada que controla la transformación automáticamente. Para usos avanzados, cuando necesitas editar la transmisión de vista previa, como con OpenGL, observa la muestra de código en la app de prueba principal de CameraX.
Transformación de coordenadas
Otra tarea común es trabajar con las coordenadas en lugar del búfer, por ejemplo, dibujar un recuadro alrededor del rostro que se detectó en la vista previa. En estos casos, debes transformar las coordenadas del rostro detectado en el análisis de imágenes para obtener una vista previa.
Con el siguiente fragmento de código, se crea una matriz que realiza un mapeo de coordenadas de análisis de imágenes a coordenadas PreviewView
. Para transformar las coordenadas (x, y) con un elemento Matrix
, consulta Matrix.mapPoints()
.
Kotlin
fun getCorrectionMatrix(imageProxy: ImageProxy, previewView: PreviewView) : Matrix {
val cropRect = imageProxy.cropRect
val rotationDegrees = imageProxy.imageInfo.rotationDegrees
val matrix = Matrix()
// A float array of the source vertices (crop rect) in clockwise order.
val source = floatArrayOf(
cropRect.left.toFloat(),
cropRect.top.toFloat(),
cropRect.right.toFloat(),
cropRect.top.toFloat(),
cropRect.right.toFloat(),
cropRect.bottom.toFloat(),
cropRect.left.toFloat(),
cropRect.bottom.toFloat()
)
// A float array of the destination vertices in clockwise order.
val destination = floatArrayOf(
0f,
0f,
previewView.width.toFloat(),
0f,
previewView.width.toFloat(),
previewView.height.toFloat(),
0f,
previewView.height.toFloat()
)
// The destination vertexes need to be shifted based on rotation degrees. The
// rotation degree represents the clockwise rotation needed to correct the image.
// Each vertex is represented by 2 float numbers in the vertices array.
val vertexSize = 2
// The destination needs to be shifted 1 vertex for every 90° rotation.
val shiftOffset = rotationDegrees / 90 * vertexSize;
val tempArray = destination.clone()
for (toIndex in source.indices) {
val fromIndex = (toIndex + shiftOffset) % source.size
destination[toIndex] = tempArray[fromIndex]
}
matrix.setPolyToPoly(source, 0, destination, 0, 4)
return matrix
}
Java
Matrix getMappingMatrix(ImageProxy imageProxy, PreviewView previewView) {
Rect cropRect = imageProxy.getCropRect();
int rotationDegrees = imageProxy.getImageInfo().getRotationDegrees();
Matrix matrix = new Matrix();
// A float array of the source vertices (crop rect) in clockwise order.
float[] source = {
cropRect.left,
cropRect.top,
cropRect.right,
cropRect.top,
cropRect.right,
cropRect.bottom,
cropRect.left,
cropRect.bottom
};
// A float array of the destination vertices in clockwise order.
float[] destination = {
0f,
0f,
previewView.getWidth(),
0f,
previewView.getWidth(),
previewView.getHeight(),
0f,
previewView.getHeight()
};
// The destination vertexes need to be shifted based on rotation degrees.
// The rotation degree represents the clockwise rotation needed to correct
// the image.
// Each vertex is represented by 2 float numbers in the vertices array.
int vertexSize = 2;
// The destination needs to be shifted 1 vertex for every 90° rotation.
int shiftOffset = rotationDegrees / 90 * vertexSize;
float[] tempArray = destination.clone();
for (int toIndex = 0; toIndex < source.length; toIndex++) {
int fromIndex = (toIndex + shiftOffset) % source.length;
destination[toIndex] = tempArray[fromIndex];
}
matrix.setPolyToPoly(source, 0, destination, 0, 4);
return matrix;
}
El contenido y las muestras de código que aparecen en esta página están sujetas a las licencias que se describen en la Licencia de Contenido. Java y OpenJDK son marcas registradas de Oracle o sus afiliados.
Última actualización: 2025-08-27 (UTC)
[[["Fácil de comprender","easyToUnderstand","thumb-up"],["Resolvió mi problema","solvedMyProblem","thumb-up"],["Otro","otherUp","thumb-up"]],[["Falta la información que necesito","missingTheInformationINeed","thumb-down"],["Muy complicado o demasiados pasos","tooComplicatedTooManySteps","thumb-down"],["Desactualizado","outOfDate","thumb-down"],["Problema de traducción","translationIssue","thumb-down"],["Problema con las muestras o los códigos","samplesCodeIssue","thumb-down"],["Otro","otherDown","thumb-down"]],["Última actualización: 2025-08-27 (UTC)"],[],[],null,["# Transform output\n\nThe output of a CameraX use case is twofold: the buffer and the transformation\ninfo. The buffer is a byte array and the transformation info is how the buffer\nshould be cropped and rotated before being shown to end users. How to apply the\ntransformation depends on the format of the buffer.\n\nImageCapture\n------------\n\nFor the `ImageCapture` use case, the crop rect buffer is applied before saving\nto disk and the rotation is saved in the Exif data. There is no additional\naction needed from the app.\n\nPreview\n-------\n\nFor the `Preview` use case, you can get the transformation information by\ncalling\n[`SurfaceRequest.setTransformationInfoListener()`](/reference/androidx/camera/core/SurfaceRequest#setTransformationInfoListener(java.util.concurrent.Executor,%20androidx.camera.core.SurfaceRequest.TransformationInfoListener)).\nEvery time the transformation is updated, the caller receives a new\n[`SurfaceRequest.TransformationInfo`](/reference/androidx/camera/core/SurfaceRequest.TransformationInfo)\nobject.\n\nHow to apply the transformation information depends on the source of the\n`Surface`, and is usually non-trivial. If the goal is to simply display the\npreview, use `PreviewView`. `PreviewView` is a custom view that automatically\nhandles transformation. For advanced uses, when you need to edit the preview\nstream, such as with OpenGL, look at the code sample in the [CameraX core test\napp](https://android.googlesource.com/platform/frameworks/support/+/refs/heads/androidx-main/camera/integration-tests/coretestapp/src/main/java/androidx/camera/integration/core).\n\nTransform coordinates\n---------------------\n\nAnother common task is to work with the coordinates instead of the buffer, such\nas drawing a box around the detected face in preview. In cases such as this, you\nneed to transform the coordinates of the detected face from image analysis to\npreview.\n\nThe following code snippet creates a matrix that maps from image analysis\ncoordinates to `PreviewView` coordinates. To transform the (x, y) coordinates\nwith a [`Matrix`](/reference/android/graphics/Matrix), see\n[`Matrix.mapPoints()`](/reference/android/graphics/Matrix#mapPoints(float%5B%5D)). \n\n### Kotlin\n\n```kotlin\nfun getCorrectionMatrix(imageProxy: ImageProxy, previewView: PreviewView) : Matrix {\n val cropRect = imageProxy.cropRect\n val rotationDegrees = imageProxy.imageInfo.rotationDegrees\n val matrix = Matrix()\n\n // A float array of the source vertices (crop rect) in clockwise order.\n val source = floatArrayOf(\n cropRect.left.toFloat(),\n cropRect.top.toFloat(),\n cropRect.right.toFloat(),\n cropRect.top.toFloat(),\n cropRect.right.toFloat(),\n cropRect.bottom.toFloat(),\n cropRect.left.toFloat(),\n cropRect.bottom.toFloat()\n )\n\n // A float array of the destination vertices in clockwise order.\n val destination = floatArrayOf(\n 0f,\n 0f,\n previewView.width.toFloat(),\n 0f,\n previewView.width.toFloat(),\n previewView.height.toFloat(),\n 0f,\n previewView.height.toFloat()\n )\n\n // The destination vertexes need to be shifted based on rotation degrees. The\n // rotation degree represents the clockwise rotation needed to correct the image.\n\n // Each vertex is represented by 2 float numbers in the vertices array.\n val vertexSize = 2\n // The destination needs to be shifted 1 vertex for every 90° rotation.\n val shiftOffset = rotationDegrees / 90 * vertexSize;\n val tempArray = destination.clone()\n for (toIndex in source.indices) {\n val fromIndex = (toIndex + shiftOffset) % source.size\n destination[toIndex] = tempArray[fromIndex]\n }\n matrix.setPolyToPoly(source, 0, destination, 0, 4)\n return matrix\n}\n```\n\n### Java\n\n```java\nMatrix getMappingMatrix(ImageProxy imageProxy, PreviewView previewView) {\n Rect cropRect = imageProxy.getCropRect();\n int rotationDegrees = imageProxy.getImageInfo().getRotationDegrees();\n Matrix matrix = new Matrix();\n\n // A float array of the source vertices (crop rect) in clockwise order.\n float[] source = {\n cropRect.left,\n cropRect.top,\n cropRect.right,\n cropRect.top,\n cropRect.right,\n cropRect.bottom,\n cropRect.left,\n cropRect.bottom\n };\n\n // A float array of the destination vertices in clockwise order.\n float[] destination = {\n 0f,\n 0f,\n previewView.getWidth(),\n 0f,\n previewView.getWidth(),\n previewView.getHeight(),\n 0f,\n previewView.getHeight()\n };\n\n // The destination vertexes need to be shifted based on rotation degrees.\n // The rotation degree represents the clockwise rotation needed to correct\n // the image.\n\n // Each vertex is represented by 2 float numbers in the vertices array.\n int vertexSize = 2;\n // The destination needs to be shifted 1 vertex for every 90° rotation.\n int shiftOffset = rotationDegrees / 90 * vertexSize;\n float[] tempArray = destination.clone();\n for (int toIndex = 0; toIndex \u003c source.length; toIndex++) {\n int fromIndex = (toIndex + shiftOffset) % source.length;\n destination[toIndex] = tempArray[fromIndex];\n }\n matrix.setPolyToPoly(source, 0, destination, 0, 4);\n return matrix;\n}\n```"]]