Behavior changes: Apps targeting Android 16 or higher

Like previous releases, Android 16 includes behavior changes that might affect your app. The following behavior changes apply exclusively to apps that are targeting Android 16 or higher. If your app is targeting Android 16 or higher, you should modify your app to support these behaviors, where applicable.

Be sure to also review the list of behavior changes that affect all apps running on Android 16 regardless of your app's targetSdkVersion.

User experience and system UI

Android 16 (API level 36) includes the following changes that are intended to create a more consistent, intuitive user experience.

Edge to edge opt-out going away

Android 15 enforced edge-to-edge for apps targeting Android 15 (API level 35), but your app could opt-out by setting R.attr#windowOptOutEdgeToEdgeEnforcement to true. For apps targeting Android 16 (API level 36), R.attr#windowOptOutEdgeToEdgeEnforcement is deprecated and disabled, and your app can't opt-out of going edge-to-edge.

  • If your app targets Android 16 (API level 36) and is running on an Android 15 device, R.attr#windowOptOutEdgeToEdgeEnforcement continues to work.
  • If your app targets Android 16 (API level 36) and is running on an Android 16 device, R.attr#windowOptOutEdgeToEdgeEnforcement is disabled.

For testing in Android 16 Beta 3, ensure your app supports edge-to-edge and remove any use of R.attr#windowOptOutEdgeToEdgeEnforcement so that your app also supports edge-to-edge on an Android 15 device. To support edge-to-edge, see the Compose and Views guidance.

Migration or opt-out required for predictive back

For apps targeting Android 16 (API level 36) or higher and running on an Android 16 or higher device, the predictive back system animations (back-to-home, cross-task, and cross-activity) are enabled by default. Additionally, onBackPressed is not called and KeyEvent.KEYCODE_BACK is not dispatched anymore.

If your app intercepts the back event and you haven't migrated to predictive back yet, update your app to use supported back navigation APIs. or temporarily opt out by setting the android:enableOnBackInvokedCallback attribute to false in the <application> or <activity> tag of your app's AndroidManifest.xml file.

The predictive back-to-home animation.
The predictive cross-activity animation.
The predictive cross-task animation.

Elegant font APIs deprecated and disabled

Apps targeting Android 15 (API level 35) have the elegantTextHeight TextView attribute set to true by default, replacing the compact font with one that is much more readable. You could override this by setting the elegantTextHeight attribute to false.

Android 16 deprecates the elegantTextHeight attribute, and the attribute will be ignored once your app targets Android 16. The "UI fonts" controlled by these APIs are being discontinued, so you should adapt any layouts to ensure consistent and future proof text rendering in Arabic, Lao, Myanmar, Tamil, Gujarati, Kannada, Malayalam, Odia, Telugu or Thai.

elegantTextHeight behavior for apps targeting Android 14 (API level 34) and lower, or for apps targeting Android 15 (API level 35) that overrode the default by setting the elegantTextHeight attribute to false.
elegantTextHeight behavior for apps targeting Android 16, or for apps targeting Android 15 (API level 35) that didn't override the default by setting the elegantTextHeight attribute to false.

Core functionality

Android 16 (API level 36) includes the following changes that modify or expand various core capabilities of the Android system.

Fixed rate work scheduling optimization

Prior to targeting Android 16, when scheduleAtFixedRate missed a task execution due to being outside a valid process lifecycle, all missed executions immediately execute when the app returns to a valid lifecycle.

When targeting Android 16, at most one missed execution of scheduleAtFixedRate is immediately executed when the app returns to a valid lifecycle. This behavior change is expected to improve app performance. Test this behavior in your app to check if your app is impacted. You can also test by using the app compatibility framework and enabling the STPE_SKIP_MULTIPLE_MISSED_PERIODIC_TASKS compat flag.

Device form factors

Android 16 (API level 36) includes the following changes for apps when displayed on large screen devices.

Adaptive layouts

With Android apps now running on a variety of devices (such as phones, tablets, foldables, desktops, cars, and TVs) and windowing modes on large screens (such as split screen and desktop windowing), developers should build Android apps that adapt to any screen and window size, regardless of device orientation. Paradigms like restricting orientation and resizability are too restrictive in today's multidevice world.

Ignore orientation, resizability, and aspect ratio restrictions

For apps targeting Android 16 (API level 36), Android 16 includes changes to how the system manages orientation, resizability, and aspect ratio restrictions. On displays with smallest width >= 600dp, the restrictions no longer apply. Apps also fill the entire display window, regardless of aspect ratio or a user's preferred orientation, and pillarboxing isn't used.

This change introduces a new standard platform behavior. Android is moving toward a model where apps are expected to adapt to various orientations, display sizes, and aspect ratios. Restrictions like fixed orientation or limited resizability hinder app adaptability, so we recommend making your app adaptive to deliver the best possible user experience.

You can also test this behavior by using the app compatibility framework and enabling the UNIVERSAL_RESIZABLE_BY_DEFAULT compat flag.

Common breaking changes

Ignoring orientation, resizability, and aspect ratio restrictions might impact your app's UI on some devices, especially elements that were designed for small layouts locked in portrait orientation: for example, issues like stretched layouts and off-screen animations and components. Any assumptions about aspect ratio or orientation can cause visual issues with your app. Learn more about how to avoid them and improve your app's adaptive behaviour.

Allowing device rotation results in more activity re-creation, which can result in losing user state if not properly preserved. Learn how to correctly save UI state in Save UI states.

Implementation details

The following manifest attributes and runtime APIs are ignored across large screen devices in full-screen and multi-window modes:

The following values for screenOrientation, setRequestedOrientation(), and getRequestedOrientation() are ignored:

  • portrait
  • reversePortrait
  • sensorPortrait
  • userPortrait
  • landscape
  • reverseLandscape
  • sensorLandscape
  • userLandscape

Regarding display resizability, android:resizeableActivity="false", android:minAspectRatio, and android:maxAspectRatio have no effect.

For apps targeting Android 16 (API level 36), app orientation, resizability, and aspect ratio constraints are ignored on large screens by default, but every app that isn't fully ready can temporarily override this behavior by opting out (which results in the previous behavior of being placed in compatibility mode).

Exceptions

The Android 16 orientation, resizability, and aspect ratio restrictions don't apply in the following situations:

  • Games (based on the android:appCategory flag)
  • Users explicitly opting in to the app's default behavior in aspect ratio settings of the device
  • Screens that are smaller than sw600dp

Opt out temporarily

To opt out a specific activity, declare the PROPERTY_COMPAT_ALLOW_RESTRICTED_RESIZABILITY manifest property:

<activity ...>
  <property android:name="android.window.PROPERTY_COMPAT_ALLOW_RESTRICTED_RESIZABILITY" android:value="true" />
  ...
</activity>

If too many parts of your app aren't ready for Android 16, you can opt out completely by applying the same property at the application level:

<application ...>
  <property android:name="android.window.PROPERTY_COMPAT_ALLOW_RESTRICTED_RESIZABILITY" android:value="true" />
</application>

Health and fitness

Android 16 (API level 36) includes the following changes related to health and fitness data.

Health and fitness permissions

For apps targeting Android 16 (API level 36) or higher, BODY_SENSORS permissions are transitioning to the granular permissions under android.permissions.health also used by Health Connect. Any API previously requiring BODY_SENSORS or BODY_SENSORS_BACKGROUND now requires the corresponding android.permissions.health permission. This affects the following data types, APIs, and foreground service types:

If your app uses these APIs, it should now request the respective granular permissions:

These permissions are the same as those that guard access to reading data from Health Connect, the Android datastore for health, fitness, and wellness data.

Mobile apps

Mobile apps migrating to use the READ_HEART_RATE and other granular permissions must also declare an activity to display the app's privacy policy. This is the same requirement as Health Connect.

Connectivity

Android 16 (API level 36) includes the following changes in Bluetooth stack to improve connectivity with peripheral devices.

New intents to handle bond loss and encryption changes

As part of the Improved bond loss handling, Android 16 also introduces 2 new intents to provide apps with greater awareness of bond loss and encryption changes.

Apps targeting Android 16 can now:

  • Receive an ACTION_KEY_MISSING intent when remote bond loss is detected, allowing them to provide more informative user feedback and take appropriate actions.
  • Receive an ACTION_ENCRYPTION_CHANGE intent whenever encryption status of the link changes. This includes encryption status change, encryption algorithm change, and encryption key size change. Apps must consider the bond restored if the link is successfully encrypted upon receiving ACTION_ENCRYPTION_CHANGE intent later.

If your app currently uses custom mechanisms for bond loss handling, migrate to the new intent ACTION_KEY_MISSING to detect and manage bond loss events. We recommend your app guide the user to confirm the remote device is in range before initiating device forgetting and re-pairing.

Moreover, if a device disconnects after ACTION_KEY_MISSING intent is received, your app should be mindful about reconnecting to the device as that device may no longer be bonded with the system.

Security

Android 16 (API level 36) includes the following security changes.

MediaStore version lockdown

For apps targeting Android 16 or higher, MediaStore#getVersion() will now be unique to each app. This eliminates identifying properties from the version string to prevent abuse and usage for fingerprinting techniques. Apps shouldn't make any assumptions around the format of this version. Apps should already handle version changes when using this API and in most cases shouldn't need to change their current behavior, unless the developer has attempted to infer additional information that is beyond the intended scope of this API.

Privacy

Android 16 (API level 36) includes the following privacy changes.

Local Network Permission

Devices on the LAN can be accessed by any app that has the INTERNET permission. This makes it easy for apps to connect to local devices but it also has privacy implications such as forming a fingerprint of the user, and being a proxy for location.

The Local Network Protections project aims to protect the user's privacy by gating access to the local network behind a new runtime permission.

Release plan

This change will be deployed between two releases, 25Q2 and TBD respectively. It is imperative that developers follow this guidance for 25Q2 and share feedback because these protections will be enforced at a later Android release. Moreover, they will need to update scenarios which depend on implicit local network access by using the following guidance and prepare for user rejection and revocation of the new permission.

Impact

At the current stage, LNP is an opt-in feature which means only the apps that opt in will be affected. The goal of the opt-in phase is for app developers to understand which parts of their app depend on implicit local network access such that they can prepare to permission guard them for the next release.

Apps will be affected if they access the user's local network using:

  • Direct or library use of raw sockets on local network addresses (e.g. mDNS or SSDP service discovery protocol)
  • Use of framework level classes that access the local network (e.g. NsdManager)

Traffic to and from a local network address requires local network access permission. The following table lists some common cases:

App Low Level Network Operation Local Network Permission Required
Making an outgoing TCP connection yes
Accepting incoming TCP connections yes
Sending a UDP unicast, multicast, broadcast yes
Receiving an incoming UDP unicast, multicast, broadcast yes

These restrictions are implemented deep in the networking stack, and thus they apply to all networking APIs. This includes sockets created in native or managed code, networking libraries like Cronet and OkHttp, and any APIs implemented on top of those. Trying to resolve services on the local network (i.e. those with a .local suffix) will require local network permission.

Exceptions to the rules above:

  • If a device's DNS server is on a local network, traffic to or from it (at port 53) doesn't require local network access permission.
  • Applications using Output Switcher as their in-app picker won't need local network permissions (more guidance to come in 2025Q4).

Developer Guidance (Opt-in)

To opt into local network restrictions, do the following:

  1. Flash the device to a build with 25Q2 Beta 3 or later.
  2. Install the app to be tested.
  3. Toggle the Appcompat flag in adb:

    adb shell am compat enable RESTRICT_LOCAL_NETWORK <package_name>
    
  4. Reboot The device

Now your app's access to the local network is restricted and any attempt to access the local network will lead to socket errors. If you are using APIs that perform local network operations outside of your app process (ex: NsdManager), they won't be impacted during the opt-in phase.

To restore access, you must grant your app permission to NEARBY_WIFI_DEVICES.

  1. Ensure the app declares the NEARBY_WIFI_DEVICES permission in its manifest.
  2. Go to Settings > Apps > [Application Name] > Permissions > Nearby devices > Allow.

Now your app's access to the local network should be restored and all your scenarios should work as they did prior to opting the app in.

Once enforcement for local network protection begins, here is how the app network traffic will be impacted.

Permission Outbound LAN Request Outbound/Inbound Internet Request Inbound LAN Request
Granted Works Works Works
Not Granted Fails Works Fails

Use the following command to toggle-off the App-Compat flag

adb shell am compat disable RESTRICT_LOCAL_NETWORK <package_name>

Errors

Errors arising from these restrictions will be returned to the calling socket whenever it invokes send or a send variant to a local network address.

Example errors:

sendto failed: EPERM (Operation not permitted)

sendto failed: ECONNABORTED (Operation not permitted)

Local Network Definition

A local network in this project refers to an IP network that utilizes a broadcast-capable network interface, such as Wi-Fi or Ethernet, but excludes cellular (WWAN) or VPN connections.

The following are considered local networks:

IPv4:

  • 169.254.0.0/16 // Link Local
  • 100.64.0.0/10 // CGNAT
  • 10.0.0.0/8 // RFC1918
  • 172.16.0.0/12 // RFC1918
  • 192.168.0.0/16 // RFC1918

IPv6:

  • Link-local
  • Directly-connected routes
  • Stub networks like Thread
  • Multiple-subnets (TBD)

Additionally, both multicast addresses (224.0.0.0/4, ff00::/8) and the IPv4 broadcast address (255.255.255.255) are classified as local network addresses.