Like previous releases, Android 16 includes behavior changes that might affect your app. The following behavior changes apply exclusively to apps that are targeting Android 16 or higher. If your app is targeting Android 16 or higher, you should modify your app to support these behaviors, where applicable.
Be sure to also review the list of behavior changes that affect all apps
running on Android 16 regardless of your app's targetSdkVersion
.
User experience and system UI
Android 16 (API level 36) includes the following changes that are intended to create a more consistent, intuitive user experience.
Edge to edge opt-out going away
Android 15 enforced edge-to-edge for apps targeting Android 15 (API
level 35), but your app could opt-out by setting
R.attr#windowOptOutEdgeToEdgeEnforcement
to true
. For apps
targeting Android 16 (API level 36),
R.attr#windowOptOutEdgeToEdgeEnforcement
is deprecated and disabled, and your
app can't opt-out of going edge-to-edge.
- If your app targets Android 16 (API level 36) and is running on an
Android 15 device,
R.attr#windowOptOutEdgeToEdgeEnforcement
continues to work. - If your app targets Android 16 (API level 36) and is running on an
Android 16 device,
R.attr#windowOptOutEdgeToEdgeEnforcement
is disabled.
For testing in Android 16 Beta 3, ensure your app supports edge-to-edge and
remove any use of R.attr#windowOptOutEdgeToEdgeEnforcement
so that your app
also supports edge-to-edge on an Android 15 device. To support edge-to-edge,
see the Compose and Views guidance.
Migration or opt-out required for predictive back
For apps targeting Android 16 (API level 36) or higher and running on an
Android 16 or higher device, the predictive back system animations
(back-to-home, cross-task, and cross-activity) are enabled by default.
Additionally, onBackPressed
is not called and
KeyEvent.KEYCODE_BACK
is not dispatched anymore.
If your app intercepts the back event and you haven't migrated to predictive
back yet, update your app to use supported back navigation APIs. or
temporarily opt out by setting the
android:enableOnBackInvokedCallback
attribute to false
in the
<application>
or <activity>
tag of your app's AndroidManifest.xml
file.
Elegant font APIs deprecated and disabled
Apps targeting Android 15 (API level 35) have the
elegantTextHeight
TextView
attribute set to true
by
default, replacing the compact font with one that is much more readable. You
could override this by setting the elegantTextHeight
attribute to false
.
Android 16 deprecates the
elegantTextHeight
attribute,
and the attribute will be ignored once your app targets Android 16. The "UI
fonts" controlled by these APIs are being discontinued, so you should adapt any
layouts to ensure consistent and future proof text rendering in Arabic, Lao,
Myanmar, Tamil, Gujarati, Kannada, Malayalam, Odia, Telugu or Thai.

elegantTextHeight
behavior for apps targeting Android
14 (API level 34) and lower, or for apps targeting Android 15 (API level 35)
that overrode the default by setting the elegantTextHeight
attribute to false
.
elegantTextHeight
behavior for apps targeting Android
16, or for apps targeting Android 15 (API level 35) that didn't override the
default by setting the elegantTextHeight
attribute to
false
.Core functionality
Android 16 (API level 36) includes the following changes that modify or expand various core capabilities of the Android system.
Fixed rate work scheduling optimization
Prior to targeting Android 16, when scheduleAtFixedRate
missed a task execution due to being outside a valid
process lifecycle, all missed executions immediately
execute when the app returns to a valid lifecycle.
When targeting Android 16, at most one missed execution of
scheduleAtFixedRate
is immediately executed when the app
returns to a valid lifecycle. This behavior change is expected to improve app
performance. Test this behavior in your app to check if your app is impacted.
You can also test by using the app compatibility framework
and enabling the STPE_SKIP_MULTIPLE_MISSED_PERIODIC_TASKS
compat flag.
Device form factors
Android 16 (API level 36) includes the following changes for apps when displayed on large screen devices.
Adaptive layouts
With Android apps now running on a variety of devices (such as phones, tablets, foldables, desktops, cars, and TVs) and windowing modes on large screens (such as split screen and desktop windowing), developers should build Android apps that adapt to any screen and window size, regardless of device orientation. Paradigms like restricting orientation and resizability are too restrictive in today's multidevice world.
Ignore orientation, resizability, and aspect ratio restrictions
For apps targeting Android 16 (API level 36), Android 16 includes changes to how the system manages orientation, resizability, and aspect ratio restrictions. On displays with smallest width >= 600dp, the restrictions no longer apply. Apps also fill the entire display window, regardless of aspect ratio or a user's preferred orientation, and pillarboxing isn't used.
This change introduces a new standard platform behavior. Android is moving toward a model where apps are expected to adapt to various orientations, display sizes, and aspect ratios. Restrictions like fixed orientation or limited resizability hinder app adaptability, so we recommend making your app adaptive to deliver the best possible user experience.
You can also test this behavior by using the
app compatibility framework and
enabling the UNIVERSAL_RESIZABLE_BY_DEFAULT
compat flag.
Common breaking changes
Ignoring orientation, resizability, and aspect ratio restrictions might impact your app's UI on some devices, especially elements that were designed for small layouts locked in portrait orientation: for example, issues like stretched layouts and off-screen animations and components. Any assumptions about aspect ratio or orientation can cause visual issues with your app. Learn more about how to avoid them and improve your app's adaptive behaviour.
Allowing device rotation results in more activity re-creation, which can result in losing user state if not properly preserved. Learn how to correctly save UI state in Save UI states.
Implementation details
The following manifest attributes and runtime APIs are ignored across large screen devices in full-screen and multi-window modes:
screenOrientation
resizableActivity
minAspectRatio
maxAspectRatio
setRequestedOrientation()
getRequestedOrientation()
The following values for screenOrientation
, setRequestedOrientation()
, and
getRequestedOrientation()
are ignored:
portrait
reversePortrait
sensorPortrait
userPortrait
landscape
reverseLandscape
sensorLandscape
userLandscape
Regarding display resizability, android:resizeableActivity="false"
,
android:minAspectRatio
, and android:maxAspectRatio
have no effect.
For apps targeting Android 16 (API level 36), app orientation, resizability, and aspect ratio constraints are ignored on large screens by default, but every app that isn't fully ready can temporarily override this behavior by opting out (which results in the previous behavior of being placed in compatibility mode).
Exceptions
The Android 16 orientation, resizability, and aspect ratio restrictions don't apply in the following situations:
- Games (based on the
android:appCategory
flag) - Users explicitly opting in to the app's default behavior in aspect ratio settings of the device
- Screens that are smaller than
sw600dp
Opt out temporarily
To opt out a specific activity, declare the
PROPERTY_COMPAT_ALLOW_RESTRICTED_RESIZABILITY
manifest property:
<activity ...>
<property android:name="android.window.PROPERTY_COMPAT_ALLOW_RESTRICTED_RESIZABILITY" android:value="true" />
...
</activity>
If too many parts of your app aren't ready for Android 16, you can opt out completely by applying the same property at the application level:
<application ...>
<property android:name="android.window.PROPERTY_COMPAT_ALLOW_RESTRICTED_RESIZABILITY" android:value="true" />
</application>
Health and fitness
Android 16 (API level 36) includes the following changes related to health and fitness data.
Health and fitness permissions
For apps targeting Android 16 (API level 36) or higher,
BODY_SENSORS
permissions are transitioning to the
granular permissions under android.permissions.health
also used by Health
Connect. Any API previously requiring BODY_SENSORS
or
BODY_SENSORS_BACKGROUND
now requires the corresponding
android.permissions.health
permission. This affects the following data types,
APIs, and foreground service types:
HEART_RATE_BPM
from Wear Health ServicesSensor.TYPE_HEART_RATE
from Android Sensor ManagerheartRateAccuracy
andheartRateBpm
from WearProtoLayout
FOREGROUND_SERVICE_TYPE_HEALTH
where the respectiveandroid.permission.health
permission is needed in place ofBODY_SENSORS
If your app uses these APIs, it should now request the respective granular permissions:
- For while-in-use monitoring of Heart Rate, SpO2, or Skin Temperature:
request the granular permission under
android.permissions.health
, such asREAD_HEART_RATE
instead ofBODY_SENSORS
. - For background sensor access: request
READ_HEALTH_DATA_IN_BACKGROUND
instead ofBODY_SENSORS_BACKGROUND
.
These permissions are the same as those that guard access to reading data from Health Connect, the Android datastore for health, fitness, and wellness data.
Mobile apps
Mobile apps migrating to use the READ_HEART_RATE
and other granular
permissions must also declare an activity to display
the app's privacy policy. This is the same requirement as Health Connect.
Connectivity
Android 16 (API level 36) includes the following changes in Bluetooth stack to improve connectivity with peripheral devices.
New intents to handle bond loss and encryption changes
As part of the Improved bond loss handling, Android 16 also introduces 2 new intents to provide apps with greater awareness of bond loss and encryption changes.
Apps targeting Android 16 can now:
- Receive an
ACTION_KEY_MISSING
intent when remote bond loss is detected, allowing them to provide more informative user feedback and take appropriate actions. - Receive an
ACTION_ENCRYPTION_CHANGE
intent whenever encryption status of the link changes. This includes encryption status change, encryption algorithm change, and encryption key size change. Apps must consider the bond restored if the link is successfully encrypted upon receivingACTION_ENCRYPTION_CHANGE
intent later.
If your app currently uses custom mechanisms for bond loss handling, migrate to
the new intent ACTION_KEY_MISSING
to detect and manage bond loss
events. We recommend your app guide the user to confirm the remote device is in
range before initiating device forgetting and re-pairing.
Moreover, if a device disconnects after ACTION_KEY_MISSING
intent
is received, your app should be mindful about reconnecting to the device as that
device may no longer be bonded with the system.
Security
Android 16 (API level 36) includes the following security changes.
MediaStore version lockdown
For apps targeting Android 16 or higher, MediaStore#getVersion()
will now
be unique to each app. This eliminates identifying properties from the version
string to prevent abuse and usage for fingerprinting techniques. Apps shouldn't
make any assumptions around the format of this version. Apps should already
handle version changes when using this API and in most cases shouldn't need to
change their current behavior, unless the developer has attempted to infer
additional information that is beyond the intended scope of this API.
Privacy
Android 16 (API level 36) includes the following privacy changes.
Local Network Permission
Devices on the LAN can be accessed by any app that has the INTERNET
permission.
This makes it easy for apps to connect to local devices but it also has privacy
implications such as forming a fingerprint of the user, and being a proxy for
location.
The Local Network Protections project aims to protect the user's privacy by gating access to the local network behind a new runtime permission.
Release plan
This change will be deployed between two releases, 25Q2 and TBD respectively. It is imperative that developers follow this guidance for 25Q2 and share feedback because these protections will be enforced at a later Android release. Moreover, they will need to update scenarios which depend on implicit local network access by using the following guidance and prepare for user rejection and revocation of the new permission.
Impact
At the current stage, LNP is an opt-in feature which means only the apps that opt in will be affected. The goal of the opt-in phase is for app developers to understand which parts of their app depend on implicit local network access such that they can prepare to permission guard them for the next release.
Apps will be affected if they access the user's local network using:
- Direct or library use of raw sockets on local network addresses (e.g. mDNS or SSDP service discovery protocol)
- Use of framework level classes that access the local network (e.g. NsdManager)
Traffic to and from a local network address requires local network access permission. The following table lists some common cases:
App Low Level Network Operation | Local Network Permission Required |
---|---|
Making an outgoing TCP connection | yes |
Accepting incoming TCP connections | yes |
Sending a UDP unicast, multicast, broadcast | yes |
Receiving an incoming UDP unicast, multicast, broadcast | yes |
These restrictions are implemented deep in the networking stack, and thus they apply to all networking APIs. This includes sockets created in native or managed code, networking libraries like Cronet and OkHttp, and any APIs implemented on top of those. Trying to resolve services on the local network (i.e. those with a .local suffix) will require local network permission.
Exceptions to the rules above:
- If a device's DNS server is on a local network, traffic to or from it (at port 53) doesn't require local network access permission.
- Applications using Output Switcher as their in-app picker won't need local network permissions (more guidance to come in 2025Q4).
Developer Guidance (Opt-in)
To opt into local network restrictions, do the following:
- Flash the device to a build with 25Q2 Beta 3 or later.
- Install the app to be tested.
Toggle the Appcompat flag in adb:
adb shell am compat enable RESTRICT_LOCAL_NETWORK <package_name>
Reboot The device
Now your app's access to the local network is restricted and any attempt to access the local network will lead to socket errors. If you are using APIs that perform local network operations outside of your app process (ex: NsdManager), they won't be impacted during the opt-in phase.
To restore access, you must grant your app permission to NEARBY_WIFI_DEVICES
.
- Ensure the app declares the
NEARBY_WIFI_DEVICES
permission in its manifest. - Go to Settings > Apps > [Application Name] > Permissions > Nearby devices > Allow.
Now your app's access to the local network should be restored and all your scenarios should work as they did prior to opting the app in.
Once enforcement for local network protection begins, here is how the app network traffic will be impacted.
Permission | Outbound LAN Request | Outbound/Inbound Internet Request | Inbound LAN Request |
---|---|---|---|
Granted | Works | Works | Works |
Not Granted | Fails | Works | Fails |
Use the following command to toggle-off the App-Compat flag
adb shell am compat disable RESTRICT_LOCAL_NETWORK <package_name>
Errors
Errors arising from these restrictions will be returned to the calling socket whenever it invokes send or a send variant to a local network address.
Example errors:
sendto failed: EPERM (Operation not permitted)
sendto failed: ECONNABORTED (Operation not permitted)
Local Network Definition
A local network in this project refers to an IP network that utilizes a broadcast-capable network interface, such as Wi-Fi or Ethernet, but excludes cellular (WWAN) or VPN connections.
The following are considered local networks:
IPv4:
- 169.254.0.0/16 // Link Local
- 100.64.0.0/10 // CGNAT
- 10.0.0.0/8 // RFC1918
- 172.16.0.0/12 // RFC1918
- 192.168.0.0/16 // RFC1918
IPv6:
- Link-local
- Directly-connected routes
- Stub networks like Thread
- Multiple-subnets (TBD)
Additionally, both multicast addresses (224.0.0.0/4, ff00::/8) and the IPv4 broadcast address (255.255.255.255) are classified as local network addresses.