Stay organized with collections
Save and categorize content based on your preferences.
A many-to-many relationship between two entities is a relationship where each
instance of the parent entity corresponds to zero or more instances of the child
entity, and the reverse is also true.
In the music streaming app example, consider the songs in the user-defined
playlists. Each playlist can include many songs, and each song can be a part of
many different playlists. Therefore, there is a many-to-many relationship
between the Playlist entity and the Song entity.
Follow these steps to define and query many-to-many relationships in your
database:
Define the relationship: Establish the entities and the
associative entity (cross-reference table) to represent the many-to-many
relationship.
Query the entities: Determine how you want to query the
related entities and create data classes to represent the intended output.
Define the relationship
To define a many-to-many relationship, first create a class for each of your two
entities. Many-to-many relationships are distinct from other relationship types
because there is generally no reference to the parent entity in the child
entity. Instead, create a third class to represent an associative
entity, or cross-reference table, between the two entities.
The cross-reference table must have columns for the primary key from each entity
in the many-to-many relationship represented in the table. In this example, each
row in the cross-reference table corresponds to a pairing of a Playlist
instance and a Song instance where the referenced song is included in the
referenced playlist.
The next step depends on how you want to query these related entities.
If you want to query playlists and a list of the corresponding songs for
each playlist, create a new data class that contains a single Playlist
object and a list of all of the Song objects that the playlist includes.
If you want to query songs and a list of the corresponding playlists for
each, create a new data class that contains a single Song object and a
list of all of the Playlist objects in which the song is included.
In either case, model the relationship between the entities by using the
associateBy property in the @Relation annotation in each of these
classes to identify the cross-reference entity providing the relationship
between the Playlist entity and the Song entity.
Finally, add a method to the DAO class to expose the query function your
app needs.
getPlaylistsWithSongs: this method queries the database and returns all
the resulting PlaylistWithSongs objects.
getSongsWithPlaylists: this method queries the database and returns all
the resulting SongWithPlaylists objects.
These methods each require Room to run two queries, so add the
@Transaction annotation to both methods so that the whole
operation is performed atomically.
Kotlin
@Transaction@Query("SELECT * FROM Playlist")fungetPlaylistsWithSongs():List<PlaylistWithSongs>@Transaction@Query("SELECT * FROM Song")fungetSongsWithPlaylists():List<SongWithPlaylists>
Java
@Transaction@Query("SELECT * FROM Playlist")publicList<PlaylistWithSongs>getPlaylistsWithSongs();@Transaction@Query("SELECT * FROM Song")publicList<SongWithPlaylists>getSongsWithPlaylists();
Content and code samples on this page are subject to the licenses described in the Content License. Java and OpenJDK are trademarks or registered trademarks of Oracle and/or its affiliates.
Last updated 2025-02-10 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2025-02-10 UTC."],[],[],null,["# Define and query many-to-many relationships\n\nA *many-to-many relationship* between two entities is a relationship where each\ninstance of the parent entity corresponds to zero or more instances of the child\nentity, and the reverse is also true.\n\nIn the music streaming app example, consider the songs in the user-defined\nplaylists. Each playlist can include many songs, and each song can be a part of\nmany different playlists. Therefore, there is a many-to-many relationship\nbetween the `Playlist` entity and the `Song` entity.\n\nFollow these steps to define and query many-to-many relationships in your\ndatabase:\n\n1. **[Define the relationship](#define)**: Establish the entities and the associative entity (cross-reference table) to represent the many-to-many relationship.\n2. **[Query the entities](#query)**: Determine how you want to query the related entities and create data classes to represent the intended output.\n\nDefine the relationship\n-----------------------\n\nTo define a many-to-many relationship, first create a class for each of your two\nentities. Many-to-many relationships are distinct from other relationship types\nbecause there is generally no reference to the parent entity in the child\nentity. Instead, create a third class to represent an [associative\nentity](https://en.wikipedia.org/wiki/Associative_entity), or *cross-reference table* , between the two entities.\nThe cross-reference table must have columns for the primary key from each entity\nin the many-to-many relationship represented in the table. In this example, each\nrow in the cross-reference table corresponds to a pairing of a `Playlist`\ninstance and a `Song` instance where the referenced song is included in the\nreferenced playlist. \n\n### Kotlin\n\n @Entity\n data class Playlist(\n @PrimaryKey val playlistId: Long,\n val playlistName: String\n )\n\n @Entity\n data class Song(\n @PrimaryKey val songId: Long,\n val songName: String,\n val artist: String\n )\n\n @Entity(primaryKeys = [\"playlistId\", \"songId\"])\n data class PlaylistSongCrossRef(\n val playlistId: Long,\n val songId: Long\n )\n\n### Java\n\n @Entity\n public class Playlist {\n @PrimaryKey public long playlistId;\n public String playlistName;\n }\n\n @Entity\n public class Song {\n @PrimaryKey public long songId;\n public String songName;\n public String artist;\n }\n\n @Entity(primaryKeys = {\"playlistId\", \"songId\"})\n public class PlaylistSongCrossRef {\n public long playlistId;\n public long songId;\n }\n\nQuery the entities\n------------------\n\nThe next step depends on how you want to query these related entities.\n\n- If you want to query *playlists* and a list of the corresponding *songs* for each playlist, create a new data class that contains a single `Playlist` object and a list of all of the `Song` objects that the playlist includes.\n- If you want to query *songs* and a list of the corresponding *playlists* for each, create a new data class that contains a single `Song` object and a list of all of the `Playlist` objects in which the song is included.\n\nIn either case, model the relationship between the entities by using the\n[`associateBy`](/reference/kotlin/androidx/room/Relation#associateBy()) property in the [`@Relation`](/reference/kotlin/androidx/room/Relation) annotation in each of these\nclasses to identify the cross-reference entity providing the relationship\nbetween the `Playlist` entity and the `Song` entity. \n\n### Kotlin\n\n data class PlaylistWithSongs(\n @Embedded val playlist: Playlist,\n @Relation(\n parentColumn = \"playlistId\",\n entityColumn = \"songId\",\n associateBy = Junction(PlaylistSongCrossRef::class)\n )\n val songs: List\u003cSong\u003e\n )\n\n data class SongWithPlaylists(\n @Embedded val song: Song,\n @Relation(\n parentColumn = \"songId\",\n entityColumn = \"playlistId\",\n associateBy = Junction(PlaylistSongCrossRef::class)\n )\n val playlists: List\u003cPlaylist\u003e\n )\n\n### Java\n\n public class PlaylistWithSongs {\n @Embedded public Playlist playlist;\n @Relation(\n parentColumn = \"playlistId\",\n entityColumn = \"songId\",\n associateBy = @Junction(PlaylistSongCrossref.class)\n )\n public List\u003cSong\u003e songs;\n }\n\n public class SongWithPlaylists {\n @Embedded public Song song;\n @Relation(\n parentColumn = \"songId\",\n entityColumn = \"playlistId\",\n associateBy = @Junction(PlaylistSongCrossref.class)\n )\n public List\u003cPlaylist\u003e playlists;\n }\n\nFinally, add a method to the DAO class to expose the query function your\napp needs.\n\n- `getPlaylistsWithSongs`: this method queries the database and returns all the resulting `PlaylistWithSongs` objects.\n- `getSongsWithPlaylists`: this method queries the database and returns all the resulting `SongWithPlaylists` objects.\n\nThese methods each require Room to run two queries, so add the\n[`@Transaction`](/reference/kotlin/androidx/room/Transaction) annotation to both methods so that the whole\noperation is performed atomically. \n\n### Kotlin\n\n @Transaction\n @Query(\"SELECT * FROM Playlist\")\n fun getPlaylistsWithSongs(): List\u003cPlaylistWithSongs\u003e\n\n @Transaction\n @Query(\"SELECT * FROM Song\")\n fun getSongsWithPlaylists(): List\u003cSongWithPlaylists\u003e\n\n### Java\n\n @Transaction\n @Query(\"SELECT * FROM Playlist\")\n public List\u003cPlaylistWithSongs\u003e getPlaylistsWithSongs();\n\n @Transaction\n @Query(\"SELECT * FROM Song\")\n public List\u003cSongWithPlaylists\u003e getSongsWithPlaylists();\n\n| **Note:** If the `@Relation` annotation does not meet your specific use case, you might need to use the `JOIN` keyword in your SQL queries to manually define the appropriate relationships. To learn more about querying multiple tables manually, read [Accessing data using Room\n| DAOs](/training/data-storage/room/accessing-data#query-multiple-tables)."]]