功能與 API

Android 16 為開發人員推出了強大的新功能和 API。以下各節會簡要說明這些功能,協助您開始使用相關 API。

如需新增、修改及移除 API 的詳細清單,請參閱 API 差異比較表。如要進一步瞭解新的 API,請參閱 Android API 參考資料 - 新的 API 會醒目顯示,以利於查看。

此外,也請查看平台變更可能對應用程式造成的影響。詳情請參閱下列頁面:

核心功能

Android 包含可擴充 Android 系統核心功能的新 API。

2025 年推出兩項 Android API

  • 這個預覽版適用於下一個 Android 主要版本,預計於 2025 年第 2 季推出。這個版本與我們過去的所有 API 版本類似,我們可以進行預定的行為變更,這些變更通常與 targetSdkVersion 相關。
  • 我們預計將主要版本提前一個季發布 (第 2 季,而非以往的第 3 季),以便與生態系統中的裝置推出時程保持一致,讓更多裝置能盡早取得主要的 Android 版本。由於主要版本將於第 2 季推出,您需要比往年提早幾個月進行年度相容性測試,確保應用程式已準備就緒。
  • 我們預計在 2025 年第 4 季推出另一個版本,其中也會納入新的開發人員 API。2025 年唯一會納入可能影響應用程式的行為變更計畫的版本,就是第 2 季主要版本。

除了新的開發人員 API,第 4 季次要版本還會推出功能更新、最佳化和錯誤修正,但不會包含任何會影響應用程式的行為變更。

2025 年 Android 版本的時間軸檢視畫面,請注意,25Q2 版本是主要版本,25Q4 版本是次要版本。

我們會持續每季發布 Android 版本。在 API 版本之間,第 1 季和第 3 季的更新會提供漸進式更新,有助確保持續提供高品質服務。我們正積極與裝置合作夥伴合作,盡可能讓 Q2 版本適用於更多裝置。

使用主要和次要版本的新 API

今天,您可以使用 SDK_INT 常數搭配 VERSION_CODES,保護含有 API 級別檢查的程式碼區塊。我們會持續為主要的 Android 版本提供支援。

if (SDK_INT >= VERSION_CODES.BAKLAVA) {
  // Use APIs introduced in Android 16
}

新的 SDK_INT_FULL 常數可用於針對主要和次要版本進行 API 檢查,並搭配新的 VERSION_CODES_FULL 列舉。

if (SDK_INT_FULL >= VERSION_CODES_FULL.[MAJOR or MINOR RELEASE]) {
  // Use APIs introduced in a major or minor release
}

您也可以使用 Build.getMinorSdkVersion() 方法,只取得 SDK 子版本。

val minorSdkVersion = Build.getMinorSdkVersion(VERSION_CODES_FULL.BAKLAVA)

這些 API 尚未定案,且可能有所變動,因此如果您有任何疑慮,請提供意見回饋

使用者體驗和系統 UI

Android 16 可讓應用程式開發人員和使用者進一步控管及彈性設定裝置,以符合自身需求。

以進度為主的通知

Android 16 推出以進度為主的通知,協助使用者順暢追蹤使用者啟動的端對端歷程。

Notification.ProgressStyle 是一種新的通知樣式,可讓您建立以進度為主的通知。主要用途包括共乘、外送和導航。在 Notification.ProgressStyle 類別中,您可以使用區隔,表示使用者歷程中的狀態和里程碑。

To learn more, see the Progress-centric notifications documentation page.

在螢幕鎖定畫面上顯示以進度為主的通知。
通知欄中顯示以進度為主的通知。

預測返回更新

Android 16 新增了新的 API,可協助您在手勢導覽 (例如返回主畫面動畫) 中啟用預測返回系統動畫。使用新的 PRIORITY_SYSTEM_NAVIGATION_OBSERVER 註冊 onBackInvokedCallback,即可在系統處理返回導覽時讓應用程式接收一般 onBackInvoked 呼叫,且不會影響一般返回導覽流程。

Android 16 也新增了 finishAndRemoveTaskCallback()moveTaskToBackCallback。只要將這些回呼註冊至 OnBackInvokedDispatcher,系統就能在使用者執行返回手勢時觸發特定行為,並播放相應的提前動畫。

更豐富的觸覺回饋

Android has exposed control over the haptic actuator ever since its inception.

Android 11 added support for more complex haptic effects that more advanced actuators could support through VibrationEffect.Compositions of device-defined semantic primitives.

Android 16 adds haptic APIs that let apps define the amplitude and frequency curves of a haptic effect while abstracting away differences between device capabilities.

開發人員工作效率和工具

我們致力於改善您的工作效率,因此大部分工作都圍繞在 Android StudioJetpack ComposeAndroid Jetpack 程式庫等工具。不過,我們也會持續尋找平台上的各種方法,協助您實現願景。

動態桌布的內容處理方式

In Android 16, the live wallpaper framework is gaining a new content API to address the challenges of dynamic, user-driven wallpapers. Currently, live wallpapers incorporating user-provided content require complex, service-specific implementations. Android 16 introduces WallpaperDescription and WallpaperInstance. WallpaperDescription lets you identify distinct instances of a live wallpaper from the same service. For example, a wallpaper that has instances on both the home screen and on the lock screen may have unique content in both places. The wallpaper picker and WallpaperManager use this metadata to better present wallpapers to users, streamlining the process for you to create diverse and personalized live wallpaper experiences.

效能和電池

Android 16 推出多項 API,可協助您收集應用程式的深入分析資訊。

系統觸發的剖析

ProfilingManager was added in Android 15, giving apps the ability to request profiling data collection using Perfetto on public devices in the field. However, since this profiling must be started from the app, critical flows such as startups or ANRs would be difficult or impossible for apps to capture.

To help with this, Android 16 introduces system-triggered profiling to ProfilingManager. Apps can register interest in receiving traces for certain triggers such as cold start reportFullyDrawn or ANRs, and then the system starts and stops a trace on the app's behalf. After the trace completes, the results are delivered to the app's data directory.

ApplicationStartInfo 中的啟動元件

ApplicationStartInfo 已在 Android 15 中新增,可讓應用程式查看程序啟動原因、啟動類型、啟動時間、節流和其他實用的診斷資料。Android 16 新增了 getStartComponent(),用於區分觸發啟動的元件類型,這有助於最佳化應用程式的啟動流程。

更深入瞭解工作

The JobScheduler#getPendingJobReason() API returns a reason why a job might be pending. However, a job might be pending for multiple reasons.

In Android 16, we are introducing a new API JobScheduler#getPendingJobReasons(int jobId), which returns multiple reasons why a job is pending, due to both explicit constraints set by the developer and implicit constraints set by the system.

We're also introducing JobScheduler#getPendingJobReasonsHistory(int jobId), which returns a list of the most recent constraint changes.

We recommend using the API to help you debug why your jobs may not be executing, especially if you're seeing reduced success rates of certain tasks or have bugs around latency of certain job completion. For example, updating widgets in the background failed to occur or prefetch job failed to be called prior to app start.

This can also better help you understand if certain jobs are not completing due to system defined constraints versus explicitly set constraints.

自動調整刷新率

在 Android 15 中推出的適應性重新整理率 (ARR) 可讓支援硬體的螢幕重新整理率,透過獨立的 VSync 步驟調整至內容影格速率。這麼做可降低耗電量,同時避免需要切換模式,進而導致卡頓現象。

Android 16 在還原 getSupportedRefreshRates() 時,會引入 hasArrSupport()getSuggestedFrameRate(int),讓應用程式更容易利用 ARR。RecyclerView 1.4從彈跳或平滑捲動中進行調整時,會在內部支援 ARR,我們也持續致力於將 ARR 支援功能加入更多 Jetpack 程式庫。這篇關於影格速率的文章介紹許多可用來設定影格速率的 API,讓應用程式能直接使用 ARR。

ADPF 中的 Headroom API

The SystemHealthManager introduces the getCpuHeadroom and getGpuHeadroom APIs, designed to provide games and resource-intensive apps with estimates of available CPU and GPU resources. These methods offer a way for you to gauge how your app or game can best improve system health, particularly when used in conjunction with other Android Dynamic Performance Framework (ADPF) APIs that detect thermal throttling.

By using CpuHeadroomParams and GpuHeadroomParams on supported devices, you can customize the time window used to compute the headroom and select between average or minimum resource availability. This can help you reduce your CPU or GPU resource usage accordingly, leading to better user experiences and improved battery life.

無障礙設定

Android 16 新增了無障礙 API 和功能,可協助您為所有使用者提供應用程式。

改良的無障礙 API

Android 16 adds additional APIs to enhance UI semantics that help improve consistency for users that rely on accessibility services, such as TalkBack.

Outline text for maximum text contrast

Users with low vision often have reduced contrast sensitivity, making it challenging to distinguish objects from their backgrounds. To help these users, Android 16 introduces outline text, replacing high contrast text, which draws a larger contrasting area around text to greatly improve legibility.

Android 16 contains new AccessibilityManager APIs to let your apps check or register a listener to see if this mode is enabled. This is primarily for UI Toolkits like Compose to offer a similar visual experience. If you maintain a UI Toolkit library or your app performs custom text rendering that bypasses the android.text.Layout class then you can use this to know when outline text is enabled.

Text with enhanced contrast before and after Android 16's new outline text accessibility feature

Duration added to TtsSpan

Android 16 extends TtsSpan with a TYPE_DURATION, consisting of ARG_HOURS, ARG_MINUTES, and ARG_SECONDS. This lets you directly annotate time duration, ensuring accurate and consistent text-to-speech output with services like TalkBack.

Support elements with multiple labels

Android currently allows UI elements to derive their accessibility label from another, and now offers the ability for multiple labels to be associated, a common scenario in web content. By introducing a list-based API within AccessibilityNodeInfo, Android can directly support these multi-label relationships. As part of this change, we've deprecated AccessibilityNodeInfo#setLabeledBy and #getLabeledBy in favor of #addLabeledBy, #removeLabeledBy, and #getLabeledByList.

Improved support for expandable elements

Android 16 adds accessibility APIs that allow you to convey the expanded or collapsed state of interactive elements, such as menus and expandable lists. By setting the expanded state using setExpandedState and dispatching TYPE_WINDOW_CONTENT_CHANGED AccessibilityEvents with a CONTENT_CHANGE_TYPE_EXPANDED content change type, you can ensure that screen readers like TalkBack announce state changes, providing a more intuitive and inclusive user experience.

Indeterminate ProgressBars

Android 16 adds RANGE_TYPE_INDETERMINATE, giving a way for you to expose RangeInfo for both determinate and indeterminate ProgressBar widgets, allowing services like TalkBack to more consistently provide feedback for progress indicators.

Tri-state CheckBox

The new AccessibilityNodeInfo getChecked and setChecked(int) methods in Android 16 now support a "partially checked" state in addition to "checked" and "unchecked." This replaces the deprecated boolean isChecked and setChecked(boolean).

Supplemental descriptions

When an accessibility service describes a ViewGroup, it combines content labels from its child views. If you provide a contentDescription for the ViewGroup, accessibility services assume you are also overriding the description of non-focusable child views. This can be problematic if you want to label things like a drop-down (for example, "Font Family") while preserving the current selection for accessibility (for example, "Roboto"). Android 16 adds setSupplementalDescription so you can provide text that provides information about a ViewGroup without overriding information from its children.

Required form fields

Android 16 adds setFieldRequired to AccessibilityNodeInfo so apps can tell an accessibility service that input to a form field is required. This is an important scenario for users filling out many types of forms, even things as simple as a required terms and conditions checkbox, helping users to consistently identify and quickly navigate between required fields.

使用 LE Audio 助聽器時,將手機設為語音通話的麥克風輸入裝置

Android 16 adds the capability for users of LE Audio hearing aids to switch between the built-in microphones on the hearing aids and the microphone on their phone for voice calls. This can be helpful in noisy environments or other situations where the hearing aid's microphones might not perform well.

控制 LEA 助聽器的環境音量

Android 16 adds the capability for users of LE Audio hearing aids to adjust the volume of ambient sound that is picked up by the hearing aid's microphones. This can be helpful in situations where background noise is too loud or too quiet.

相機

Android 16 強化了對專業相機使用者的支援,可進行混合式自動曝光,並精確調整色溫和色調。新的夜間模式指標可協助應用程式瞭解何時該切換至夜間模式攝影工作階段,以及何時該切換回來。新的 Intent 動作可讓您更輕鬆地拍攝動態相片,我們也持續改良 Ultra HDR 相片,支援 HEIC 編碼和 ISO 21496-1 草案標準的新參數。

混合式自動曝光

Android 16 adds new hybrid auto-exposure modes to Camera2, allowing you to manually control specific aspects of exposure while letting the auto-exposure (AE) algorithm handle the rest. You can control ISO + AE, and exposure time + AE, providing greater flexibility compared to the current approach where you either have full manual control or rely entirely on auto-exposure.

fun setISOPriority() {
    // ... (Your existing code before the snippet) ...

    val availablePriorityModes = mStaticInfo.characteristics.get(
        CameraCharacteristics.CONTROL_AE_AVAILABLE_PRIORITY_MODES
    )

    // ... (Your existing code between the snippets) ...

    // Turn on AE mode to set priority mode
    reqBuilder.set(
        CaptureRequest.CONTROL_AE_MODE,
        CameraMetadata.CONTROL_AE_MODE_ON
    )
    reqBuilder.set(
        CaptureRequest.CONTROL_AE_PRIORITY_MODE,
        CameraMetadata.CONTROL_AE_PRIORITY_MODE_SENSOR_SENSITIVITY_PRIORITY
    )
    reqBuilder.set(
        CaptureRequest.SENSOR_SENSITIVITY,
        TEST_SENSITIVITY_VALUE
    )
    val request: CaptureRequest = reqBuilder.build()

    // ... (Your existing code after the snippet) ...
}

精確調整色溫和色調

Android 16 adds camera support for fine color temperature and tint adjustments to better support professional video recording applications. In previous Android versions, you could control white balance settings through CONTROL_AWB_MODE, which contains options limited to a preset list, such as Incandescent, Cloudy, and Twilight. The COLOR_CORRECTION_MODE_CCT enables the use of COLOR_CORRECTION_COLOR_TEMPERATURE and COLOR_CORRECTION_COLOR_TINT for precise adjustments of white balance based on the correlated color temperature.

fun setCCT() {
    // ... (Your existing code before this point) ...

    val colorTemperatureRange: Range<Int> =
        mStaticInfo.characteristics[CameraCharacteristics.COLOR_CORRECTION_COLOR_TEMPERATURE_RANGE]

    // Set to manual mode to enable CCT mode
    reqBuilder[CaptureRequest.CONTROL_AWB_MODE] = CameraMetadata.CONTROL_AWB_MODE_OFF
    reqBuilder[CaptureRequest.COLOR_CORRECTION_MODE] = CameraMetadata.COLOR_CORRECTION_MODE_CCT
    reqBuilder[CaptureRequest.COLOR_CORRECTION_COLOR_TEMPERATURE] = 5000
    reqBuilder[CaptureRequest.COLOR_CORRECTION_COLOR_TINT] = 30

    val request: CaptureRequest = reqBuilder.build()

    // ... (Your existing code after this point) ...
}

The following examples show how a photo would look after applying different color temperature and tint adjustments:

The original image with no color temperature or tint adjustments applied.
The image with color temperature adjusted to 3000.
The image with color temperature adjusted to 7000.


The image with tint levels lowered by 50.
The image with tint levels raised by 50.

相機夜間模式場景偵測

To help your app know when to switch to and from a night mode camera session, Android 16 adds EXTENSION_NIGHT_MODE_INDICATOR. If supported, it's available in the CaptureResult within Camera2.

This is the API we briefly mentioned as coming soon in the How Instagram enabled users to take stunning low light photos blog post. That post is a practical guide on how to implement night mode together with a case study that links higher-quality in-app night mode photos with an increase in the number of photos shared from the in-app camera.

動態相片拍攝意圖動作

Android 16 adds standard Intent actions — ACTION_MOTION_PHOTO_CAPTURE, and ACTION_MOTION_PHOTO_CAPTURE_SECURE — which request that the camera application capture a motion photo and return it.

You must either pass an extra EXTRA_OUTPUT to control where the image will be written, or a Uri through Intent.setClipData(ClipData). If you don't set a ClipData, it will be copied there for you when calling Context.startActivity(Intent).

An example of a motion photo, showing the still image followed by the motion playback.

UltraHDR 圖片強化

An illustration of Standard Dynamic Range (SDR) versus High Dynamic Range (HDR) image quality.

Android 16 continues our work to deliver dazzling image quality with UltraHDR images. It adds support for UltraHDR images in the HEIC file format. These images will get ImageFormat type HEIC_ULTRAHDR and will contain an embedded gainmap similar to the existing UltraHDR JPEG format. We're working on AVIF support for UltraHDR as well, so stay tuned.

In addition, Android 16 implements additional parameters in UltraHDR from the ISO 21496-1 draft standard, including the ability to get and set the colorspace that gainmap math should be applied in, as well as support for HDR encoded base images with SDR gainmaps.

圖形

Android 16 包含最新的圖像改善功能,例如使用 AGSL 自訂圖像效果。

使用 AGSL 製作自訂圖像效果

Android 16 新增了 RuntimeColorFilterRuntimeXfermode,讓您可以製作複雜的效果 (例如閾值、棕褐色和色調飽和度),並套用至繪圖呼叫。自 Android 13 起,您可以使用 AGSL 建立可擴充 Shader 的自訂 RuntimeShaders。新的 API 會反映這項情況,新增由 AGSL 提供動力的 RuntimeColorFilter,可擴充 ColorFilter,以及 Xfermode 效果,讓您在來源和目的地像素之間實作以 AGSL 為基礎的自訂合成和混合效果。

private val thresholdEffectString = """
    uniform half threshold;

    half4 main(half4 c) {
        half luminosity = dot(c.rgb, half3(0.2126, 0.7152, 0.0722));
        half bw = step(threshold, luminosity);
        return bw.xxx1 * c.a;
    }"""

fun setCustomColorFilter(paint: Paint) {
   val filter = RuntimeColorFilter(thresholdEffectString)
   filter.setFloatUniform(0.5);
   paint.colorFilter = filter
}

連線能力

Android 16 更新了平台,讓應用程式能使用通訊和無線技術的最新進展。

安全再升級的測距功能

Android 16 adds support for robust security features in Wi-Fi location on supported devices with Wi-Fi 6's 802.11az, allowing apps to combine the higher accuracy, greater scalability, and dynamic scheduling of the protocol with security enhancements including AES-256-based encryption and protection against MITM attacks. This allows it to be used more safely in proximity use cases, such as unlocking a laptop or a vehicle door. 802.11az is integrated with the Wi-Fi 6 standard, leveraging its infrastructure and capabilities for wider adoption and easier deployment.

一般測距 API

Android 16 包含新的 RangingManager,可用於判斷本機裝置與遠端裝置之間的距離和角度,前提是裝置支援硬體。RangingManager 支援各種測距技術,例如 BLE 通道測試、BLE RSSI 測距、超寬頻和 Wi-Fi 往返時間。

隨附裝置管理工具裝置狀態

In Android 16, new APIs are being introduced for binding your companion app service. Service will be bound when BLE is in range and Bluetooth is connected and service will be unbound when BLE is out of range or Bluetooth is disconnected. App will receives a new 'onDevicePresenceEvent()' callback based on various of DevicePresenceEvent. More details can be found in 'startObservingDevicePresence(ObservingDevicePresenceRequest)'.

媒體

Android 16 包含多項功能,可提升媒體體驗。

相片挑選工具改良功能

The photo picker provides a safe, built-in way for users to grant your app access to selected images and videos from both local and cloud storage, instead of their entire media library. Using a combination of Modular System Components through Google System Updates and Google Play services, it's supported back to Android 4.4 (API level 19). Integration requires just a few lines of code with the associated Android Jetpack library.

Android 16 includes the following improvements to the photo picker:

  • Embedded photo picker: New APIs that enable apps to embed the photo picker into their view hierarchy. This allows it to feel like a more integrated part of the app while still leveraging the process isolation that allows users to select media without the app needing overly broad permissions. To maximize compatibility across platform versions and simplify your integration, you'll want to use the forthcoming Android Jetpack library if you want to integrate the embedded photo picker.
  • Cloud search in photo picker: New APIs that enable searching from the cloud media provider for the Android photo picker. Search functionality in the photo picker is coming soon.

進階專業影片

Android 16 introduces support for the Advanced Professional Video (APV) codec which is designed to be used for professional level high quality video recording and post production.

The APV codec standard has the following features:

  • Perceptually lossless video quality (close to raw video quality)
  • Low complexity and high throughput intra-frame-only coding (without pixel domain prediction) to better support editing workflows
  • Support for high bit-rate range up to a few Gbps for 2K, 4K and 8K resolution content, enabled by a lightweight entropy coding scheme
  • Frame tiling for immersive content and for enabling parallel encoding and decoding
  • Support for various chroma sampling formats and bit-depths
  • Support for multiple decoding and re-encoding without severe visual quality degradation
  • Support multi-view video and auxiliary video like depth, alpha, and preview
  • Support for HDR10/10+ and user-defined metadata

A reference implementation of APV is provided through the OpenAPV project. Android 16 will implement support for the APV 422-10 Profile that provides YUV 422 color sampling along with 10-bit encoding and for target bitrates of up to 2Gbps.

隱私權

Android 16 包含多項功能,可協助應用程式開發人員保護使用者隱私權。

健康資料同步更新

Health Connect adds ACTIVITY_INTENSITY, a data type defined according to World Health Organization guidelines around moderate and vigorous activity. Each record requires the start time, the end time, and whether the activity intensity is moderate or vigorous.

Health Connect also contains updated APIs supporting medical records. This allows apps to read and write medical records in FHIR format with explicit user consent.

Android 版 Privacy Sandbox

Android 16 incorporates the latest version of the Privacy Sandbox on Android, part of our ongoing work to develop technologies where users know their privacy is protected. Our website has more about the Privacy Sandbox on Android developer beta program to help you get started. Check out the SDK Runtime which allows SDKs to run in a dedicated runtime environment separate from the app they are serving, providing stronger safeguards around user data collection and sharing.

安全性

Android 16 包含多項功能,可協助您提升應用程式的安全性及保護應用程式資料。

金鑰共用 API

Android 16 新增了 API,可支援與其他應用程式共用 Android KeyStore 金鑰的存取權。新的 KeyStoreManager 類別支援應用程式 uid 授予撤銷金鑰存取權,並包含可讓應用程式存取共用金鑰的 API。

裝置板型規格

Android 16 可讓應用程式充分運用 Android 的板型規格。

電視的標準化影像和音訊品質架構

The new MediaQuality package in Android 16 exposes a set of standardized APIs for access to audio and picture profiles and hardware-related settings. This allows streaming apps to query profiles and apply them to media dynamically:

  • Movies mastered with a wider dynamic range require greater color accuracy to see subtle details in shadows and adjust to ambient light, so a profile that prefers color accuracy over brightness may be appropriate.
  • Live sporting events are often mastered with a narrow dynamic range, but are often watched in daylight, so a profile that preferences brightness over color accuracy can give better results.
  • Fully interactive content wants minimal processing to reduce latency, and wants higher frame rates, which is why many TV's ship with a game profile.

The API allows apps to switch between profiles and users to enjoy tuning supported TVs to best suit their content.

國際化

Android 16 新增多項功能,可提升使用者在不同語言環境下的裝置使用體驗。

直書文字

Android 16 adds low-level support for rendering and measuring text vertically to provide foundational vertical writing support for library developers. This is particularly useful for languages like Japanese that commonly use vertical writing systems. A new flag, VERTICAL_TEXT_FLAG, has been added to the Paint class. When this flag is set using Paint.setFlags, Paint's text measurement APIs will report vertical advances instead of horizontal advances, and Canvas will draw text vertically.

val text = "「春は、曙。」"
Box(
    Modifier.padding(innerPadding).background(Color.White).fillMaxSize().drawWithContent {
        drawIntoCanvas { canvas ->
            val paint = Paint().apply { textSize = 64.sp.toPx() }
            // Draw text vertically
            paint.flags = paint.flags or VERTICAL_TEXT_FLAG
            val height = paint.measureText(text)
            canvas.nativeCanvas.drawText(
                text,
                0,
                text.length,
                size.width / 2,
                (size.height - height) / 2,
                paint
            )
        }
    }
) {}

自訂計量系統

Users can now customize their measurement system in regional preferences within Settings. The user preference is included as part of the locale code, so you can register a BroadcastReceiver on ACTION_LOCALE_CHANGED to handle locale configuration changes when regional preferences change.

Using formatters can help match the local experience. For example, "0.5 in" in English (United States), is "12,7 mm" for a user who has set their phone to English (Denmark) or who uses their phone in English (United States) with the metric system as the measurement system preference.

To find these settings, open the Settings app and navigate to System > Languages & region.