Para acessar os modelos Gemini Pro e Flash, recomendamos que os desenvolvedores Android usem a API Gemini Developer com a lógica de IA do Firebase. Ele permite que você comece sem precisar de um cartão de crédito e oferece um nível sem custo financeiro generoso. Depois de validar sua integração com uma pequena base de usuários, você pode escalonar mudando para o nível pago.
Primeiros passos
Antes de interagir com a API Gemini diretamente no seu app, você precisa fazer algumas coisas, incluindo se familiarizar com a solicitação e configurar o Firebase e seu app para usar o SDK.
Testar comandos
Experimentar comandos pode ajudar a encontrar a melhor frase, conteúdo e formato para seu app Android. O Google AI Studio é um ambiente de desenvolvimento integrado que pode ser usado para criar protótipos e projetar comandos para os casos de uso do app.
Criar o comando certo para seu caso de uso é mais arte do que ciência, o que torna a experimentação essencial. Saiba mais sobre solicitações na documentação do Firebase.
Quando estiver satisfeito com o comando, clique no botão "<>" para receber sintetizadores de código que podem ser adicionados ao seu código.
Configurar um projeto do Firebase e conectar seu app a ele
Quando estiver tudo pronto para chamar a API no seu app, siga as instruções na "Etapa 1" do Guia de início rápido da lógica de IA do Firebase para configurar o Firebase e o SDK no seu app.
Adicionar a dependência do Gradle
Adicione a seguinte dependência do Gradle ao módulo do app:
Kotlin
dependencies {
// ... other androidx dependencies
// Import the BoM for the Firebase platform
implementation(platform("com.google.firebase:firebase-bom:33.13.0"))
// Add the dependency for the Firebase AI Logic library When using the BoM,
// you don't specify versions in Firebase library dependencies
implementation("com.google.firebase:firebase-ai")
}
Java
dependencies {
// Import the BoM for the Firebase platform
implementation(platform("com.google.firebase:firebase-bom:33.13.0"))
// Add the dependency for the Firebase AI Logic library When using the BoM,
// you don't specify versions in Firebase library dependencies
implementation("com.google.firebase:firebase-ai")
// Required for one-shot operations (to use `ListenableFuture` from Guava
// Android)
implementation("com.google.guava:guava:31.0.1-android")
// Required for streaming operations (to use `Publisher` from Reactive
// Streams)
implementation("org.reactivestreams:reactive-streams:1.0.4")
}
Inicializar o modelo generativo
Comece instanciando um GenerativeModel
e especifique o nome do modelo:
Kotlin
val model = Firebase.ai(backend = GenerativeBackend.googleAI())
.generativeModel("gemini-2.0-flash")
Java
GenerativeModel firebaseAI = FirebaseAI.getInstance(GenerativeBackend.googleAI())
.generativeModel("gemini-2.0-flash");
GenerativeModelFutures model = GenerativeModelFutures.from(firebaseAI);
Saiba mais sobre os modelos disponíveis para uso com a API Developer do Gemini. Saiba mais sobre como configurar parâmetros de modelo.
Interagir com a API Gemini Developer no seu app
Agora que você configurou o Firebase e seu app para usar o SDK, é possível interagir com a API Gemini Developer no seu app.
Gerar texto
Para gerar uma resposta de texto, chame generateContent()
com o comando.
Kotlin
scope.launch {
val response = model.generateContent("Write a story about a magic backpack.")
}
Java
Content prompt = new Content.Builder()
.addText("Write a story about a magic backpack.")
.build();
ListenableFuture<GenerateContentResponse> response = model.generateContent(prompt);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
@Override
public void onSuccess(GenerateContentResponse result) {
String resultText = result.getText();
[...]
}
@Override
public void onFailure(Throwable t) {
t.printStackTrace();
}
}, executor);
Gerar texto com base em imagens e outras mídias
Também é possível gerar texto a partir de um comando que inclui texto, imagens ou outras
mídias. Ao chamar generateContent()
, você pode transmitir a mídia como dados inline.
Por exemplo, para usar um bitmap, use o tipo de conteúdo image
:
Kotlin
scope.launch {
val response = model.generateContent(
content {
image(bitmap)
text("what is the object in the picture?")
}
)
}
Java
Content content = new Content.Builder()
.addImage(bitmap)
.addText("what is the object in the picture?")
.build();
ListenableFuture<GenerateContentResponse> response = model.generateContent(content);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
@Override
public void onSuccess(GenerateContentResponse result) {
String resultText = result.getText();
[...]
}
@Override
public void onFailure(Throwable t) {
t.printStackTrace();
}
}, executor);
Para transmitir um arquivo de áudio, use o tipo de conteúdo inlineData
:
Kotlin
val contentResolver = applicationContext.contentResolver
val inputStream = contentResolver.openInputStream(audioUri).use { stream ->
stream?.let {
val bytes = stream.readBytes()
val prompt = content {
inlineData(bytes, "audio/mpeg") // Specify the appropriate audio MIME type
text("Transcribe this audio recording.")
}
val response = model.generateContent(prompt)
}
}
Java
ContentResolver resolver = getApplicationContext().getContentResolver();
try (InputStream stream = resolver.openInputStream(audioUri)) {
File audioFile = new File(new URI(audioUri.toString()));
int audioSize = (int) audioFile.length();
byte audioBytes = new byte[audioSize];
if (stream != null) {
stream.read(audioBytes, 0, audioBytes.length);
stream.close();
// Provide a prompt that includes audio specified earlier and text
Content prompt = new Content.Builder()
.addInlineData(audioBytes, "audio/mpeg") // Specify the appropriate audio MIME type
.addText("Transcribe what's said in this audio recording.")
.build();
// To generate text output, call `generateContent` with the prompt
ListenableFuture<GenerateContentResponse> response = model.generateContent(prompt);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
@Override
public void onSuccess(GenerateContentResponse result) {
String text = result.getText();
Log.d(TAG, (text == null) ? "" : text);
}
@Override
public void onFailure(Throwable t) {
Log.e(TAG, "Failed to generate a response", t);
}
}, executor);
} else {
Log.e(TAG, "Error getting input stream for file.");
// Handle the error appropriately
}
} catch (IOException e) {
Log.e(TAG, "Failed to read the audio file", e);
} catch (URISyntaxException e) {
Log.e(TAG, "Invalid audio file", e);
}
E para fornecer um arquivo de vídeo, continue usando o tipo de conteúdo inlineData
:
Kotlin
val contentResolver = applicationContext.contentResolver
contentResolver.openInputStream(videoUri).use { stream ->
stream?.let {
val bytes = stream.readBytes()
val prompt = content {
inlineData(bytes, "video/mp4") // Specify the appropriate video MIME type
text("Describe the content of this video")
}
val response = model.generateContent(prompt)
}
}
Java
ContentResolver resolver = getApplicationContext().getContentResolver();
try (InputStream stream = resolver.openInputStream(videoUri)) {
File videoFile = new File(new URI(videoUri.toString()));
int videoSize = (int) videoFile.length();
byte[] videoBytes = new byte[videoSize];
if (stream != null) {
stream.read(videoBytes, 0, videoBytes.length);
stream.close();
// Provide a prompt that includes video specified earlier and text
Content prompt = new Content.Builder()
.addInlineData(videoBytes, "video/mp4")
.addText("Describe the content of this video")
.build();
// To generate text output, call generateContent with the prompt
ListenableFuture<GenerateContentResponse> response = model.generateContent(prompt);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
@Override
public void onSuccess(GenerateContentResponse result) {
String resultText = result.getText();
System.out.println(resultText);
}
@Override
public void onFailure(Throwable t) {
t.printStackTrace();
}
}, executor);
}
} catch (IOException e) {
e.printStackTrace();
} catch (URISyntaxException e) {
e.printStackTrace();
}
Da mesma forma, você também pode transmitir documentos PDF (application/pdf
) e de texto simples
(text/plain
) transmitindo o tipo MIME correspondente como um parâmetro.
Chat multiturno
Você também pode oferecer suporte a conversas com vários turnos. Inicialize uma conversa com a
função startChat()
. Você pode fornecer ao modelo um histórico de
mensagens. Em seguida, chame a função sendMessage()
para enviar mensagens de chat.
Kotlin
val chat = model.startChat(
history = listOf(
content(role = "user") { text("Hello, I have 2 dogs in my house.") },
content(role = "model") { text("Great to meet you. What would you like to know?") }
)
)
scope.launch {
val response = chat.sendMessage("How many paws are in my house?")
}
Java
Content.Builder userContentBuilder = new Content.Builder();
userContentBuilder.setRole("user");
userContentBuilder.addText("Hello, I have 2 dogs in my house.");
Content userContent = userContentBuilder.build();
Content.Builder modelContentBuilder = new Content.Builder();
modelContentBuilder.setRole("model");
modelContentBuilder.addText("Great to meet you. What would you like to know?");
Content modelContent = userContentBuilder.build();
List<Content> history = Arrays.asList(userContent, modelContent);
// Initialize the chat
ChatFutures chat = model.startChat(history);
// Create a new user message
Content.Builder messageBuilder = new Content.Builder();
messageBuilder.setRole("user");
messageBuilder.addText("How many paws are in my house?");
Content message = messageBuilder.build();
// Send the message
ListenableFuture<GenerateContentResponse> response = chat.sendMessage(message);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
@Override
public void onSuccess(GenerateContentResponse result) {
String resultText = result.getText();
System.out.println(resultText);
}
@Override
public void onFailure(Throwable t) {
t.printStackTrace();
}
}, executor);
Consulte a documentação do Firebase para mais detalhes.
Próximas etapas
- Confira o app de exemplo do Firebase para Android e o catálogo de exemplos de IA para Android no GitHub.
- Prepare seu app para produção, incluindo a configuração do Firebase App Check para proteger a API Gemini contra abusos de clientes não autorizados.
- Saiba mais sobre a lógica de IA do Firebase na documentação do Firebase.