Premiers pas avec Vulkan sur Android

1. Introduction

Pourquoi utiliser Vulkan dans mon jeu ?

Vulkan est la principale API graphique de bas niveau sur Android. Vulkan offre des performances optimales pour les jeux qui implémentent leur propre moteur de jeu et de rendu.

Vulkan est disponible sur Android à partir d'Android 7.0 (niveau d'API 24). La prise en charge de Vulkan 1.1 est obligatoire pour les nouveaux appareils Android 64 bits à partir d'Android 10.0. Le profil de référence Android 2022 définit également la version minimale de l'API Vulkan 1.1.

Les jeux qui comportent de nombreux appels de dessin et qui utilisent OpenGL ES peuvent entraîner une surcharge importante du pilote puisque les appels de dessin ont un coût élevé dans OpenGL ES. Ces jeux peuvent être dépendants du processeur lorsqu'ils accordent une grande partie de leur temps de rendu au pilote graphique. En passant d'OpenGL ES à Vulkan, il est également possible de constater une réduction significative de l'utilisation du processeur et de la consommation d'énergie dans ces jeux. Cela est particulièrement vrai si le jeu comporte des scènes complexes qui ne peuvent pas utiliser efficacement les instances pour réduire les appels de dessin.

Objectifs de l'atelier

Dans cet atelier de programmation, vous utiliserez une application Android C++ de base et ajouter du code pour configurer le pipeline de rendu Vulkan. Vous implémenterez ensuite un code qui utilise Vulkan pour afficher un triangle texturé et rotatif à l'écran.

Ce dont vous avez besoin

2. Configuration

Configurer votre environnement de développement

Si vous n'avez jamais travaillé avec des projets natifs dans Android Studio, vous devrez peut-être installer le NDK Android et CMake. Si vous les avez déjà installés, passez à la configuration du projet.

Vérifier que le SDK, le NDK et CMake sont installés

Lancez Android Studio. Lorsque la fenêtre "Welcome to Android Studio" (Bienvenue dans Android Studio) s'affiche, ouvrez le menu déroulant "Configure" (Configurer), puis sélectionnez l'option SDK Manager.

3b7b47a139bc456.png

Si vous avez déjà ouvert un projet, vous pouvez ouvrir SDK Manager via le menu "Tools" (Outils). Cliquez sur le menu Tools (Outils) et sélectionnez SDK Manager. La fenêtre SDK Manager s'ouvre.

Dans la barre latérale, sélectionnez : Appearance & Behavior > System Settings > Android SDK (Apparence et comportement > Paramètres système > SDK Android). Sélectionnez l'onglet SDK Platforms (Plates-formes de SDK) dans le volet du SDK Android afin d'afficher la liste des options des outils installés. Assurez-vous que le SDK Android 12.0 ou version ultérieure est installé.

931f6ae02822f417.png

Ensuite, sélectionnez l'onglet SDK Tools et assurez-vous que leNDK et que CMake sont installés.

Remarque : Il n'est pas impératif de posséder la version exacte, tant qu'il s'agit d'une version récente. Toutefois, nous utilisons actuellement le NDK 26.1.10909125 et CMake 3.22.1. La version du NDK installée par défaut changera au fil du temps avec les nouvelles versions du NDK. Si vous devez installer une version spécifique du NDK, suivez les instructions de la documentation de référence d'Android Studio pour installer le NDK dans la section Installer une version spécifique du NDK.

d28adf9279adec4.png

Une fois que tous les outils requis sont cochés, cliquez sur le bouton Apply (Appliquer) en bas de la fenêtre pour les installer. Vous pouvez ensuite fermer la fenêtre du SDK Android en cliquant sur le bouton OK.

Configuration du projet

Un projet de départ dérivé du modèle C++ est mis à votre disposition dans un dépôt Git. Le projet de départ implémente l'initialisation de l'application et la gestion des événements, mais n'effectue pas encore de configuration graphique ni de rendu.

Cloner le dépôt

À partir de la ligne de commande, accédez au répertoire dans lequel vous souhaitez placer le répertoire racine du projet et clonez-le depuis GitHub :

git clone -b codelab/start https://github.com/android/getting-started-with-vulkan-on-android-codelab.git --recurse-submodules

Assurez-vous de commencer à partir du commit initial du dépôt intitulé [codelab] start: empty app.

Ouvrez le projet avec Android Studio, compilez-le, puis exécutez-le sur un appareil connecté. Le projet sera lancé sur un écran noir et vide, vous ajouterez le rendu graphique dans les sections suivantes.

3. Créer une instance et un périphérique Vulkan

La première étape de l'initialisation de l'API Vulkan consiste à créer une instance d'objet Vulkan (VkInstance).

L'objet VkInstance représente une instance d'application de l'exécution de Vulkan. Il s'agit de l'objet racine de l'API Vulkan, utilisé pour récupérer des informations sur les objets du périphérique Vulkan et les couches qu'il souhaite activer, ainsi que pour les instancier.

Lorsqu'une application crée une instance VkInstance, elle doit fournir des informations la concernant, telles que son nom, sa version et les extensions d'instance Vulkan dont elle a besoin.

La conception de l'API Vulkan comprend un système de couches qui fournit un mécanisme d'interception et de traitement des appels d'API avant qu'ils n'atteignent le pilote GPU. L'application peut désigner les couches à activer lors de la création d'une VkInstance. La couche la plus communément utilisée est la couche de validation Vulkan, qui fournit une analyse de l'utilisation de l'API pendant l'exécution afin de détecter les erreurs ou les pratiques suboptimales en matière de performances.

Une fois une VkInstance créée, l'application peut l'utiliser pour interroger les périphériques physiques disponibles sur le système, créer des périphériques logiques et des surfaces de rendu.

Une VkInstance est généralement créée au début de l'application et détruites à la fin de l'exécution. Cependant, il est possible de créer plusieurs VkInstances au sein d'une même application, par exemple si l'application doit utiliser plusieurs GPU ou créer plusieurs fenêtres.

// CODELAB: hellovk.h
void HelloVK::createInstance() {
  VkApplicationInfo appInfo{};
  appInfo.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO;
  appInfo.pApplicationName = "Hello Triangle";
  appInfo.applicationVersion = VK_MAKE_VERSION(1, 0, 0);
  appInfo.pEngineName = "No Engine";
  appInfo.engineVersion = VK_MAKE_VERSION(1, 0, 0);
  appInfo.apiVersion = VK_API_VERSION_1_0;

  VkInstanceCreateInfo createInfo{};
  createInfo.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
  createInfo.pApplicationInfo = &appInfo;
  createInfo.enabledExtensionCount = (uint32_t)requiredExtensions.size();
  createInfo.ppEnabledExtensionNames = requiredExtensions.data();
  createInfo.pApplicationInfo = &appInfo;

  createInfo.enabledLayerCount = 0;
  createInfo.pNext = nullptr;

  VK_CHECK(vkCreateInstance(&createInfo, nullptr, &instance));
  }
}

Un VkPhysicalDevice est un objet Vulkan qui représente un périphérique physique Vulkan sur le système. La plupart des appareils Android ne renvoient qu'un seul VkPhysicalDevice représentant le GPU. Cependant, un PC ou un appareil Android peut énumérer plusieurs périphériques physiques. Par exemple, un ordinateur peut contenir à la fois un GPU discret et un GPU intégré.

Les VkPhysicalDevices peuvent être interrogés sur leurs propriétés, telles que leur nom, leur fournisseur, la version de leur pilote et les fonctions prises en charge. Ces informations peuvent être utilisées pour choisir le périphérique physique le mieux adapté à une application particulière.

Une fois qu'un VkPhysicalDevice a été choisi, l'application peut créer un périphérique logique à partir de celui-ci. Un périphérique logique est une représentation du périphérique physique qui est spécifique à l'application. Il possède son propre état, ses propres ressources et est indépendant des autres périphériques logiques pouvant être créés à partir du même périphérique physique.

Il existe différents types de files d'attente qui proviennent de différentes familles de files d'attente. De plus, chaque famille n'autorise qu'un sous-ensemble de commandes. Par exemple, une famille de files d'attente peut ne permettre que le traitement des commandes liées aux calculs ou une autre ne permettre que les commandes liées aux transferts de mémoire.

Un VkPhysicalDevice peut énumérer tous les types de familles de files d'attente disponibles. Nous ne nous intéressons ici qu'à la file liée aux commandes graphiques, mais il peut y avoir d'autres files d'attente qui prennent en charge uniquement COMPUTE ou TRANSFER. Une famille de files d'attente n'a pas de type propre. Elle est représentée par un index numérique de type uint32_t dans son objet parent (VkPhysicalDevice).

Plusieurs périphériques logiques peuvent être créés à partir d'un même VkPhysicalDevice. Ceci est utile pour les applications qui doivent utiliser plusieurs GPU ou créer plusieurs fenêtres.

VkDevice est un objet Vulkan qui représente un périphérique logique Vulkan. Il s'agit d'une abstraction fine au-dessus du périphérique physique qui fournit toutes les fonctionnalités nécessaires à la création et à la gestion des ressources Vulkan, telles que les tampons, les images et les nuanceurs.

Un VkDevice, propre à son application d'origine, est créé à partir d'un VkPhysicalDevice. Il possède son propre état, ses propres ressources et est indépendant des autres périphériques logiques pouvant être créés à partir du même périphérique physique.

Un objet VkSurfaceKHR représente une surface sur laquelle peuvent être affichés les rendus. Pour afficher des éléments graphiques sur l'écran de l'appareil, vous allez créer une surface en utilisant une référence à l'objet de fenêtre de l'application. Une fois un objet VkSurfaceKHR créé, l'application peut l'utiliser pour créer un objet VkSwapchainKHR.

L'objet VkSwapchainKHR représente une infrastructure qui possède les tampons dans lesquels nous effectuerons le rendu avant de pouvoir les visualiser à l'écran. Il s'agit essentiellement d'une liste d'images en attente d'être affichées à l'écran. Nous allons récupérer une de ces images, dessiner dessus, puis la renvoyer dans la file. Le fonctionnement de la file et les conditions d’envoi d’une image dépendent du paramétrage de la "swap chain". Cependant, l'intérêt principal de la swap chain est de synchroniser l’envoi des images avec la fréquence d'actualisation de l'écran.

// CODELAB: hellovk.h - Data Types
struct QueueFamilyIndices {
  std::optional<uint32_t> graphicsFamily;
  std::optional<uint32_t> presentFamily;
  bool isComplete() {
    return graphicsFamily.has_value() && presentFamily.has_value();
  }
};

struct SwapChainSupportDetails {
  VkSurfaceCapabilitiesKHR capabilities;
  std::vector<VkSurfaceFormatKHR> formats;
  std::vector<VkPresentModeKHR> presentModes;
};

struct ANativeWindowDeleter {
  void operator()(ANativeWindow *window) { ANativeWindow_release(window); }
};

Vous pouvez configurer une vérification par couche de validation si vous avez besoin de déboguer votre application. Vous pouvez également vérifier les extensions spécifiques dont votre jeu peut avoir besoin.

// CODELAB: hellovk.h
bool HelloVK::checkValidationLayerSupport() {
  uint32_t layerCount;
  vkEnumerateInstanceLayerProperties(&layerCount, nullptr);

  std::vector<VkLayerProperties> availableLayers(layerCount);
  vkEnumerateInstanceLayerProperties(&layerCount, availableLayers.data());

  for (const char *layerName : validationLayers) {
    bool layerFound = false;
    for (const auto &layerProperties : availableLayers) {
      if (strcmp(layerName, layerProperties.layerName) == 0) {
        layerFound = true;
        break;
      }
    }

    if (!layerFound) {
      return false;
    }
  }
  return true;
}

std::vector<const char *> HelloVK::getRequiredExtensions(
    bool enableValidationLayers) {
  std::vector<const char *> extensions;
  extensions.push_back("VK_KHR_surface");
  extensions.push_back("VK_KHR_android_surface");
  if (enableValidationLayers) {
    extensions.push_back(VK_EXT_DEBUG_UTILS_EXTENSION_NAME);
  }
  return extensions;
}

Une fois que vous avez trouvé la configuration appropriée et créé la VkInstance, créez la VkSurface qui représente la fenêtre sur laquelle afficher le rendu.

// CODELAB: hellovk.h
void HelloVK::createSurface() {
  assert(window != nullptr);  // window not initialized
  const VkAndroidSurfaceCreateInfoKHR create_info{
      .sType = VK_STRUCTURE_TYPE_ANDROID_SURFACE_CREATE_INFO_KHR,
      .pNext = nullptr,
      .flags = 0,
      .window = window.get()};

  VK_CHECK(vkCreateAndroidSurfaceKHR(instance, &create_info,
                                     nullptr /* pAllocator */, &surface));
}

Énumérez les périphériques physiques (GPU) disponibles et choisissez le premier périphérique approprié disponible.

// CODELAB: hellovk.h
void HelloVK::pickPhysicalDevice() {
  uint32_t deviceCount = 0;
  vkEnumeratePhysicalDevices(instance, &deviceCount, nullptr);

  assert(deviceCount > 0);  // failed to find GPUs with Vulkan support!

  std::vector<VkPhysicalDevice> devices(deviceCount);
  vkEnumeratePhysicalDevices(instance, &deviceCount, devices.data());

  for (const auto &device : devices) {
    if (isDeviceSuitable(device)) {
      physicalDevice = device;
      break;
    }
  }

  assert(physicalDevice != VK_NULL_HANDLE);  // failed to find a suitable GPU!
}

Pour vérifier si le périphérique est approprié, nous devons en trouver un qui prenne en charge la file d'attente GRAPHICS.

// CODELAB: hellovk.h
bool HelloVK::isDeviceSuitable(VkPhysicalDevice device) {
  QueueFamilyIndices indices = findQueueFamilies(device);
  bool extensionsSupported = checkDeviceExtensionSupport(device);
  bool swapChainAdequate = false;
  if (extensionsSupported) {
    SwapChainSupportDetails swapChainSupport = querySwapChainSupport(device);
    swapChainAdequate = !swapChainSupport.formats.empty() &&
                        !swapChainSupport.presentModes.empty();
  }
  return indices.isComplete() && extensionsSupported && swapChainAdequate;
}
// CODELAB: hellovk.h
bool HelloVK::checkDeviceExtensionSupport(VkPhysicalDevice device) {
  uint32_t extensionCount;
  vkEnumerateDeviceExtensionProperties(device, nullptr, &extensionCount,
                                       nullptr);

  std::vector<VkExtensionProperties> availableExtensions(extensionCount);
  vkEnumerateDeviceExtensionProperties(device, nullptr, &extensionCount,
                                       availableExtensions.data());

  std::set<std::string> requiredExtensions(deviceExtensions.begin(),
                                           deviceExtensions.end());

  for (const auto &extension : availableExtensions) {
    requiredExtensions.erase(extension.extensionName);
  }

  return requiredExtensions.empty();
}
// CODELAB: hellovk.h
QueueFamilyIndices HelloVK::findQueueFamilies(VkPhysicalDevice device) {
  QueueFamilyIndices indices;

  uint32_t queueFamilyCount = 0;
  vkGetPhysicalDeviceQueueFamilyProperties(device, &queueFamilyCount, nullptr);

  std::vector<VkQueueFamilyProperties> queueFamilies(queueFamilyCount);
  vkGetPhysicalDeviceQueueFamilyProperties(device, &queueFamilyCount,
                                           queueFamilies.data());

  int i = 0;
  for (const auto &queueFamily : queueFamilies) {
    if (queueFamily.queueFlags & VK_QUEUE_GRAPHICS_BIT) {
      indices.graphicsFamily = i;
    }

    VkBool32 presentSupport = false;
    vkGetPhysicalDeviceSurfaceSupportKHR(device, i, surface, &presentSupport);
    if (presentSupport) {
      indices.presentFamily = i;
    }

    if (indices.isComplete()) {
      break;
    }

    i++;
  }
  return indices;
}

Une fois le PhysicalDevice à utiliser déterminé, créez un périphérique logique (connu sous le nom de VkDevice). L'extrait de code suivant représente un périphérique Vulkan initialisé et prêt à créer tous les autres objets qui seront utilisés par votre application.

// CODELAB: hellovk.h
void HelloVK::createLogicalDeviceAndQueue() {
  QueueFamilyIndices indices = findQueueFamilies(physicalDevice);
  std::vector<VkDeviceQueueCreateInfo> queueCreateInfos;
  std::set<uint32_t> uniqueQueueFamilies = {indices.graphicsFamily.value(),
                                            indices.presentFamily.value()};
  float queuePriority = 1.0f;
  for (uint32_t queueFamily : uniqueQueueFamilies) {
    VkDeviceQueueCreateInfo queueCreateInfo{};
    queueCreateInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
    queueCreateInfo.queueFamilyIndex = queueFamily;
    queueCreateInfo.queueCount = 1;
    queueCreateInfo.pQueuePriorities = &queuePriority;
    queueCreateInfos.push_back(queueCreateInfo);
  }

  VkPhysicalDeviceFeatures deviceFeatures{};

  VkDeviceCreateInfo createInfo{};
  createInfo.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;
  createInfo.queueCreateInfoCount =
      static_cast<uint32_t>(queueCreateInfos.size());
  createInfo.pQueueCreateInfos = queueCreateInfos.data();
  createInfo.pEnabledFeatures = &deviceFeatures;
  createInfo.enabledExtensionCount =
      static_cast<uint32_t>(deviceExtensions.size());
  createInfo.ppEnabledExtensionNames = deviceExtensions.data();
  if (enableValidationLayers) {
    createInfo.enabledLayerCount =
        static_cast<uint32_t>(validationLayers.size());
    createInfo.ppEnabledLayerNames = validationLayers.data();
  } else {
    createInfo.enabledLayerCount = 0;
  }

  VK_CHECK(vkCreateDevice(physicalDevice, &createInfo, nullptr, &device));

  vkGetDeviceQueue(device, indices.graphicsFamily.value(), 0, &graphicsQueue);
  vkGetDeviceQueue(device, indices.presentFamily.value(), 0, &presentQueue);
}

À la fin de cette étape, vous ne verrez qu'une fenêtre noire sans aucun rendu, car vous êtes encore en plein processus de configuration. En cas de problème, vous pouvez comparer votre travail avec le commit du dépôt intitulé [codelab] step: create instance and device.

4. Créer la swap chain et les objets de synchronisation

VkSwapchain est un objet Vulkan qui représente une file d'attente d'images pouvant être affichées. Cet objet est utilisé pour implémenter la double ou la triple mise en mémoire tampon, et ainsi réduire les déchirures d'écran et améliorer les performances.

Pour créer une VkSwapchain, une application doit d'abord créer un objet VkSurfaceKHR. Nous avons déjà créé notre objet VkSurfaceKHR lorsque nous avons configuré la fenêtre lors de l'étape de création de l'instance.

L'objet VkSwapchainKHR sera associé à plusieurs images. Ces images sont utilisées pour stocker la scène rendue. L'application peut acquérir une image à partir de l'objet VkSwapchainKHR, effectuer un rendu, puis l'afficher à l'écran.

Une fois qu'une image a été affichée à l'écran, elle n'est plus disponible pour l'application. L'application doit acquérir une autre image à partir de l'objet VkSwapchainKHR avant de pouvoir effectuer un nouveau rendu.

Les VkSwapchains sont généralement créées au début de l'application et détruite à la fin de l'exécution. Il est cependant possible de créer et de détruire plusieurs VkSwapchains au sein d'une même application, par exemple si l'application doit utiliser plusieurs GPU ou créer plusieurs fenêtres.

Les objets de synchronisation sont des objets utilisés pour la synchronisation. Vulkan utilise VkFence, VkSemaphore, et VkEvent afin de contrôler l'accès aux ressources entre plusieurs files d'attente. Vous aurez besoin de ces objets si vous utilisez plusieurs files et passes de rendu, mais pour notre simple exemple, nous ne les utiliserons pas.

// CODELAB: hellovk.h
void HelloVK::createSyncObjects() {
  imageAvailableSemaphores.resize(MAX_FRAMES_IN_FLIGHT);
  renderFinishedSemaphores.resize(MAX_FRAMES_IN_FLIGHT);
  inFlightFences.resize(MAX_FRAMES_IN_FLIGHT);

  VkSemaphoreCreateInfo semaphoreInfo{};
  semaphoreInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;

  VkFenceCreateInfo fenceInfo{};
  fenceInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
  fenceInfo.flags = VK_FENCE_CREATE_SIGNALED_BIT;
  for (size_t i = 0; i < MAX_FRAMES_IN_FLIGHT; i++) {
    VK_CHECK(vkCreateSemaphore(device, &semaphoreInfo, nullptr,
                               &imageAvailableSemaphores[i]));

    VK_CHECK(vkCreateSemaphore(device, &semaphoreInfo, nullptr,
                               &renderFinishedSemaphores[i]));

    VK_CHECK(vkCreateFence(device, &fenceInfo, nullptr, &inFlightFences[i]));
  }
}
// CODELAB: hellovk.h
void HelloVK::createSwapChain() {
  SwapChainSupportDetails swapChainSupport =
      querySwapChainSupport(physicalDevice);

  auto chooseSwapSurfaceFormat =
      [](const std::vector<VkSurfaceFormatKHR> &availableFormats) {
        for (const auto &availableFormat : availableFormats) {
          if (availableFormat.format == VK_FORMAT_B8G8R8A8_SRGB &&
              availableFormat.colorSpace == VK_COLOR_SPACE_SRGB_NONLINEAR_KHR) {
            return availableFormat;
          }
        }
        return availableFormats[0];
      };

  VkSurfaceFormatKHR surfaceFormat =
      chooseSwapSurfaceFormat(swapChainSupport.formats);

  // Please check
  // https://registry.khronos.org/vulkan/specs/1.3-extensions/man/html/VkPresentModeKHR.html
  // for a discourse on different present modes.
  //
  // VK_PRESENT_MODE_FIFO_KHR = Hard Vsync
  // This is always supported on Android phones
  VkPresentModeKHR presentMode = VK_PRESENT_MODE_FIFO_KHR;

  uint32_t imageCount = swapChainSupport.capabilities.minImageCount + 1;
  if (swapChainSupport.capabilities.maxImageCount > 0 &&
      imageCount > swapChainSupport.capabilities.maxImageCount) {
    imageCount = swapChainSupport.capabilities.maxImageCount;
  }
  pretransformFlag = swapChainSupport.capabilities.currentTransform;

  VkSwapchainCreateInfoKHR createInfo{};
  createInfo.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR;
  createInfo.surface = surface;
  createInfo.minImageCount = imageCount;
  createInfo.imageFormat = surfaceFormat.format;
  createInfo.imageColorSpace = surfaceFormat.colorSpace;
  createInfo.imageExtent = displaySizeIdentity;
  createInfo.imageArrayLayers = 1;
  createInfo.imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
  createInfo.preTransform = pretransformFlag;

  QueueFamilyIndices indices = findQueueFamilies(physicalDevice);
  uint32_t queueFamilyIndices[] = {indices.graphicsFamily.value(),
                                   indices.presentFamily.value()};

  if (indices.graphicsFamily != indices.presentFamily) {
    createInfo.imageSharingMode = VK_SHARING_MODE_CONCURRENT;
    createInfo.queueFamilyIndexCount = 2;
    createInfo.pQueueFamilyIndices = queueFamilyIndices;
  } else {
    createInfo.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE;
    createInfo.queueFamilyIndexCount = 0;
    createInfo.pQueueFamilyIndices = nullptr;
  }
  createInfo.compositeAlpha = VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR;
  createInfo.presentMode = presentMode;
  createInfo.clipped = VK_TRUE;
  createInfo.oldSwapchain = VK_NULL_HANDLE;

  VK_CHECK(vkCreateSwapchainKHR(device, &createInfo, nullptr, &swapChain));

  vkGetSwapchainImagesKHR(device, swapChain, &imageCount, nullptr);
  swapChainImages.resize(imageCount);
  vkGetSwapchainImagesKHR(device, swapChain, &imageCount,
                          swapChainImages.data());

  swapChainImageFormat = surfaceFormat.format;
  swapChainExtent = displaySizeIdentity;
}
// CODELAB: hellovk.h
SwapChainSupportDetails HelloVK::querySwapChainSupport(
    VkPhysicalDevice device) {
  SwapChainSupportDetails details;

  vkGetPhysicalDeviceSurfaceCapabilitiesKHR(device, surface,
                                            &details.capabilities);

  uint32_t formatCount;
  vkGetPhysicalDeviceSurfaceFormatsKHR(device, surface, &formatCount, nullptr);

  if (formatCount != 0) {
    details.formats.resize(formatCount);
    vkGetPhysicalDeviceSurfaceFormatsKHR(device, surface, &formatCount,
                                         details.formats.data());
  }

  uint32_t presentModeCount;
  vkGetPhysicalDeviceSurfacePresentModesKHR(device, surface, &presentModeCount,
                                            nullptr);

  if (presentModeCount != 0) {
    details.presentModes.resize(presentModeCount);
    vkGetPhysicalDeviceSurfacePresentModesKHR(
        device, surface, &presentModeCount, details.presentModes.data());
  }
  return details;
}

Vous devrez également vous préparer à recréer la swap chain lorsque le périphérique perd le contexte. Par exemple, lorsque l'utilisateur change d'application.

// CODELAB: hellovk.h
void HelloVK::reset(ANativeWindow *newWindow, AAssetManager *newManager) {
  window.reset(newWindow);
  assetManager = newManager;
  if (initialized) {
    createSurface();
    recreateSwapChain();
  }
}

void HelloVK::recreateSwapChain() {
  vkDeviceWaitIdle(device);
  cleanupSwapChain();
  createSwapChain();
}

À la fin de cette étape, vous ne verrez qu'une fenêtre noire sans aucun rendu, car vous êtes encore en plein processus de configuration. En cas de problème, vous pouvez comparer votre travail avec le commit du dépôt intitulé [codelab] step: create swapchain and sync objects.

5. Créer Renderpass et Framebuffer

VkImageView est un objet Vulkan qui décrit la manière d'accéder à une VkImage. Cet objet spécifie la plage de sous-ressources de l'image à laquelle accéder, le format de pixel à utiliser et les permutations à appliquer aux canaux.

VkRenderPass est un objet Vulkan qui décrit comment le GPU doit rendre une scène. Cet objet spécifie les attachements qui seront utilisés, leur ordre de rendu et la manière dont ils seront utilisés à chaque étape du pipeline de rendu.

VkFramebuffer est un objet Vulkan qui représente un ensemble de vues d'images qui seront utilisées comme attachements lors de l'exécution d'une passe de rendu. En d'autres termes, cet objet lie les attachements actuels de l'image à la passe de rendu.

// CODELAB: hellovk.h
void HelloVK::createImageViews() {
  swapChainImageViews.resize(swapChainImages.size());
  for (size_t i = 0; i < swapChainImages.size(); i++) {
    VkImageViewCreateInfo createInfo{};
    createInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
    createInfo.image = swapChainImages[i];
    createInfo.viewType = VK_IMAGE_VIEW_TYPE_2D;
    createInfo.format = swapChainImageFormat;
    createInfo.components.r = VK_COMPONENT_SWIZZLE_IDENTITY;
    createInfo.components.g = VK_COMPONENT_SWIZZLE_IDENTITY;
    createInfo.components.b = VK_COMPONENT_SWIZZLE_IDENTITY;
    createInfo.components.a = VK_COMPONENT_SWIZZLE_IDENTITY;
    createInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
    createInfo.subresourceRange.baseMipLevel = 0;
    createInfo.subresourceRange.levelCount = 1;
    createInfo.subresourceRange.baseArrayLayer = 0;
    createInfo.subresourceRange.layerCount = 1;
    VK_CHECK(vkCreateImageView(device, &createInfo, nullptr,
                               &swapChainImageViews[i]));
  }
}

Dans Vulkan, un "attachement" correspond à ce qui est communément appelé "cible de rendu", soit une image utilisée comme sortie pour le rendu. Seule la description du format est nécessaire ici. Par exemple, la passe de rendu peut produire un format de couleur spécifique, un format de profondeur ou de pochoir. Vous devez également préciser si le contenu de votre attachement doit être conservé, supprimé ou effacé au début de la passe.

// CODELAB: hellovk.h
void HelloVK::createRenderPass() {
  VkAttachmentDescription colorAttachment{};
  colorAttachment.format = swapChainImageFormat;
  colorAttachment.samples = VK_SAMPLE_COUNT_1_BIT;

  colorAttachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
  colorAttachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE;

  colorAttachment.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
  colorAttachment.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;

  colorAttachment.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
  colorAttachment.finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;

  VkAttachmentReference colorAttachmentRef{};
  colorAttachmentRef.attachment = 0;
  colorAttachmentRef.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;

  VkSubpassDescription subpass{};
  subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
  subpass.colorAttachmentCount = 1;
  subpass.pColorAttachments = &colorAttachmentRef;

  VkSubpassDependency dependency{};
  dependency.srcSubpass = VK_SUBPASS_EXTERNAL;
  dependency.dstSubpass = 0;
  dependency.srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
  dependency.srcAccessMask = 0;
  dependency.dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
  dependency.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;

  VkRenderPassCreateInfo renderPassInfo{};
  renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
  renderPassInfo.attachmentCount = 1;
  renderPassInfo.pAttachments = &colorAttachment;
  renderPassInfo.subpassCount = 1;
  renderPassInfo.pSubpasses = &subpass;
  renderPassInfo.dependencyCount = 1;
  renderPassInfo.pDependencies = &dependency;

  VK_CHECK(vkCreateRenderPass(device, &renderPassInfo, nullptr, &renderPass));
}

Le Framebuffer est le lien vers les images qui peuvent être utilisées comme attachements (cible de rendu). Créez un objet Framebuffer en spécifiant la passe de rendu et l'ensemble des vues d'images.

// CODELAB: hellovk.h
void HelloVK::createFramebuffers() {
  swapChainFramebuffers.resize(swapChainImageViews.size());
  for (size_t i = 0; i < swapChainImageViews.size(); i++) {
    VkImageView attachments[] = {swapChainImageViews[i]};

    VkFramebufferCreateInfo framebufferInfo{};
    framebufferInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
    framebufferInfo.renderPass = renderPass;
    framebufferInfo.attachmentCount = 1;
    framebufferInfo.pAttachments = attachments;
    framebufferInfo.width = swapChainExtent.width;
    framebufferInfo.height = swapChainExtent.height;
    framebufferInfo.layers = 1;

    VK_CHECK(vkCreateFramebuffer(device, &framebufferInfo, nullptr,
                                 &swapChainFramebuffers[i]));
  }
}

À la fin de cette étape, vous ne verrez qu'une fenêtre noire sans aucun rendu, car vous êtes encore en plein processus de configuration. En cas de problème, vous pouvez comparer votre travail avec le commit du dépôt intitulé [codelab] step: create renderpass and framebuffer.

6. Créer le module de nuanceur et le pipeline

VkShaderModule est un objet Vulkan qui représente un nuanceur programmable. Les nuanceurs sont utilisés pour effectuer diverses opérations sur les données graphiques, telles que la transformation des vertices, l'ombrage des pixels et le calcul des effets.

VkPipeline est un objet Vulkan qui représente un pipeline graphique programmable. Il s'agit d'un ensemble d'objets d'état qui décrivent la manière dont le GPU doit rendre une scène.

VkDescriptorSetLayout sert de modèle à VkDescriptorSet, qui est lui un groupe de descripteurs. Les descripteurs servent de handle et permettent aux nuanceurs d'accéder aux ressources (telles que les tampons, les images ou les échantillonneurs).

// CODELAB: hellovk.h
void HelloVK::createDescriptorSetLayout() {
  VkDescriptorSetLayoutBinding uboLayoutBinding{};
  uboLayoutBinding.binding = 0;
  uboLayoutBinding.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
  uboLayoutBinding.descriptorCount = 1;
  uboLayoutBinding.stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
  uboLayoutBinding.pImmutableSamplers = nullptr;

  VkDescriptorSetLayoutCreateInfo layoutInfo{};
  layoutInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO;
  layoutInfo.bindingCount = 1;
  layoutInfo.pBindings = &uboLayoutBinding;

  VK_CHECK(vkCreateDescriptorSetLayout(device, &layoutInfo, nullptr,
                                       &descriptorSetLayout));
}

Définissez la fonction createShaderModule afin de charger les nuanceurs dans les objets VkShaderModule.

// CODELAB: hellovk.h
VkShaderModule HelloVK::createShaderModule(const std::vector<uint8_t> &code) {
  VkShaderModuleCreateInfo createInfo{};
  createInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
  createInfo.codeSize = code.size();

  // Satisfies alignment requirements since the allocator
  // in vector ensures worst case requirements
  createInfo.pCode = reinterpret_cast<const uint32_t *>(code.data());
  VkShaderModule shaderModule;
  VK_CHECK(vkCreateShaderModule(device, &createInfo, nullptr, &shaderModule));

  return shaderModule;
}

Créez le pipeline graphique en chargeant un simple nuanceur de vertex et de fragment.

// CODELAB: hellovk.h
void HelloVK::createGraphicsPipeline() {
  auto vertShaderCode =
      LoadBinaryFileToVector("shaders/shader.vert.spv", assetManager);
  auto fragShaderCode =
      LoadBinaryFileToVector("shaders/shader.frag.spv", assetManager);

  VkShaderModule vertShaderModule = createShaderModule(vertShaderCode);
  VkShaderModule fragShaderModule = createShaderModule(fragShaderCode);

  VkPipelineShaderStageCreateInfo vertShaderStageInfo{};
  vertShaderStageInfo.sType =
      VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
  vertShaderStageInfo.stage = VK_SHADER_STAGE_VERTEX_BIT;
  vertShaderStageInfo.module = vertShaderModule;
  vertShaderStageInfo.pName = "main";

  VkPipelineShaderStageCreateInfo fragShaderStageInfo{};
  fragShaderStageInfo.sType =
      VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
  fragShaderStageInfo.stage = VK_SHADER_STAGE_FRAGMENT_BIT;
  fragShaderStageInfo.module = fragShaderModule;
  fragShaderStageInfo.pName = "main";

  VkPipelineShaderStageCreateInfo shaderStages[] = {vertShaderStageInfo,
                                                    fragShaderStageInfo};

  VkPipelineVertexInputStateCreateInfo vertexInputInfo{};
  vertexInputInfo.sType =
      VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
  vertexInputInfo.vertexBindingDescriptionCount = 0;
  vertexInputInfo.pVertexBindingDescriptions = nullptr;
  vertexInputInfo.vertexAttributeDescriptionCount = 0;
  vertexInputInfo.pVertexAttributeDescriptions = nullptr;

  VkPipelineInputAssemblyStateCreateInfo inputAssembly{};
  inputAssembly.sType =
      VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
  inputAssembly.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
  inputAssembly.primitiveRestartEnable = VK_FALSE;

  VkPipelineViewportStateCreateInfo viewportState{};
  viewportState.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
  viewportState.viewportCount = 1;
  viewportState.scissorCount = 1;

  VkPipelineRasterizationStateCreateInfo rasterizer{};
  rasterizer.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
  rasterizer.depthClampEnable = VK_FALSE;
  rasterizer.rasterizerDiscardEnable = VK_FALSE;
  rasterizer.polygonMode = VK_POLYGON_MODE_FILL;
  rasterizer.lineWidth = 1.0f;

  rasterizer.cullMode = VK_CULL_MODE_BACK_BIT;
  rasterizer.frontFace = VK_FRONT_FACE_CLOCKWISE;

  rasterizer.depthBiasEnable = VK_FALSE;
  rasterizer.depthBiasConstantFactor = 0.0f;
  rasterizer.depthBiasClamp = 0.0f;
  rasterizer.depthBiasSlopeFactor = 0.0f;

  VkPipelineMultisampleStateCreateInfo multisampling{};
  multisampling.sType =
      VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
  multisampling.sampleShadingEnable = VK_FALSE;
  multisampling.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT;
  multisampling.minSampleShading = 1.0f;
  multisampling.pSampleMask = nullptr;
  multisampling.alphaToCoverageEnable = VK_FALSE;
  multisampling.alphaToOneEnable = VK_FALSE;

  VkPipelineColorBlendAttachmentState colorBlendAttachment{};
  colorBlendAttachment.colorWriteMask =
      VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT |
      VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT;
  colorBlendAttachment.blendEnable = VK_FALSE;

  VkPipelineColorBlendStateCreateInfo colorBlending{};
  colorBlending.sType =
      VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
  colorBlending.logicOpEnable = VK_FALSE;
  colorBlending.logicOp = VK_LOGIC_OP_COPY;
  colorBlending.attachmentCount = 1;
  colorBlending.pAttachments = &colorBlendAttachment;
  colorBlending.blendConstants[0] = 0.0f;
  colorBlending.blendConstants[1] = 0.0f;
  colorBlending.blendConstants[2] = 0.0f;
  colorBlending.blendConstants[3] = 0.0f;

  VkPipelineLayoutCreateInfo pipelineLayoutInfo{};
  pipelineLayoutInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
  pipelineLayoutInfo.setLayoutCount = 1;
  pipelineLayoutInfo.pSetLayouts = &descriptorSetLayout;
  pipelineLayoutInfo.pushConstantRangeCount = 0;
  pipelineLayoutInfo.pPushConstantRanges = nullptr;

  VK_CHECK(vkCreatePipelineLayout(device, &pipelineLayoutInfo, nullptr,
                                  &pipelineLayout));
  std::vector<VkDynamicState> dynamicStateEnables = {VK_DYNAMIC_STATE_VIEWPORT,
                                                     VK_DYNAMIC_STATE_SCISSOR};
  VkPipelineDynamicStateCreateInfo dynamicStateCI{};
  dynamicStateCI.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO;
  dynamicStateCI.pDynamicStates = dynamicStateEnables.data();
  dynamicStateCI.dynamicStateCount =
      static_cast<uint32_t>(dynamicStateEnables.size());

  VkGraphicsPipelineCreateInfo pipelineInfo{};
  pipelineInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
  pipelineInfo.stageCount = 2;
  pipelineInfo.pStages = shaderStages;
  pipelineInfo.pVertexInputState = &vertexInputInfo;
  pipelineInfo.pInputAssemblyState = &inputAssembly;
  pipelineInfo.pViewportState = &viewportState;
  pipelineInfo.pRasterizationState = &rasterizer;
  pipelineInfo.pMultisampleState = &multisampling;
  pipelineInfo.pDepthStencilState = nullptr;
  pipelineInfo.pColorBlendState = &colorBlending;
  pipelineInfo.pDynamicState = &dynamicStateCI;
  pipelineInfo.layout = pipelineLayout;
  pipelineInfo.renderPass = renderPass;
  pipelineInfo.subpass = 0;
  pipelineInfo.basePipelineHandle = VK_NULL_HANDLE;
  pipelineInfo.basePipelineIndex = -1;

  VK_CHECK(vkCreateGraphicsPipelines(device, VK_NULL_HANDLE, 1, &pipelineInfo,
                                     nullptr, &graphicsPipeline));
  vkDestroyShaderModule(device, fragShaderModule, nullptr);
  vkDestroyShaderModule(device, vertShaderModule, nullptr);
}

À la fin de cette étape, vous ne verrez qu'une fenêtre noire sans aucun rendu, car vous êtes encore en plein processus de configuration. En cas de problème, vous pouvez comparer votre travail avec le commit du dépôt intitulé [codelab] step: create shader and pipeline.

7. DescriptorSet et tampon de variables uniformes

VkDescriptorSet est un objet Vulkan qui représente un ensemble de ressources de descripteurs. Les ressources de descripteurs sont utilisées pour fournir des entrées aux nuanceurs, telles que des tampons de variables uniformes, des échantillonneurs d'images et des tampons de stockage. Pour créer les VkDescriptorSet, nous devrons d'abord créer une VkDescriptorPool.

VkBuffer est une mémoire tampon utilisée pour le partage des données entre le GPU et le CPU. Lorsqu'il est utilisé comme tampon de variables uniformes, il transmet des données aux nuanceurs sous forme de variables uniformes. Les variables uniformes sont des constantes accessibles aux nuanceurs dans un pipeline.

// CODELAB: hellovk.h
void HelloVK::createDescriptorPool() {
  VkDescriptorPoolSize poolSize{};
  poolSize.type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
  poolSize.descriptorCount = static_cast<uint32_t>(MAX_FRAMES_IN_FLIGHT);

  VkDescriptorPoolCreateInfo poolInfo{};
  poolInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
  poolInfo.poolSizeCount = 1;
  poolInfo.pPoolSizes = &poolSize;
  poolInfo.maxSets = static_cast<uint32_t>(MAX_FRAMES_IN_FLIGHT);

  VK_CHECK(vkCreateDescriptorPool(device, &poolInfo, nullptr, &descriptorPool));
}

Créez des VkDescriptorSets alloués à partir du VkDescriptorPool spécifié.

// CODELAB: hellovk.h
void HelloVK::createDescriptorSets() {
  std::vector<VkDescriptorSetLayout> layouts(MAX_FRAMES_IN_FLIGHT,
                                             descriptorSetLayout);
  VkDescriptorSetAllocateInfo allocInfo{};
  allocInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO;
  allocInfo.descriptorPool = descriptorPool;
  allocInfo.descriptorSetCount = static_cast<uint32_t>(MAX_FRAMES_IN_FLIGHT);
  allocInfo.pSetLayouts = layouts.data();

  descriptorSets.resize(MAX_FRAMES_IN_FLIGHT);
  VK_CHECK(vkAllocateDescriptorSets(device, &allocInfo, descriptorSets.data()));

  for (size_t i = 0; i < MAX_FRAMES_IN_FLIGHT; i++) {
    VkDescriptorBufferInfo bufferInfo{};
    bufferInfo.buffer = uniformBuffers[i];
    bufferInfo.offset = 0;
    bufferInfo.range = sizeof(UniformBufferObject);

    VkWriteDescriptorSet descriptorWrite{};
    descriptorWrite.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
    descriptorWrite.dstSet = descriptorSets[i];
    descriptorWrite.dstBinding = 0;
    descriptorWrite.dstArrayElement = 0;
    descriptorWrite.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
    descriptorWrite.descriptorCount = 1;
    descriptorWrite.pBufferInfo = &bufferInfo;

    vkUpdateDescriptorSets(device, 1, &descriptorWrite, 0, nullptr);
  }
}

Spécifiez notre structure de tampons de variables uniformes et créez ces tampons. N'oubliez pas d'allouer la mémoire de VkDeviceMemory à l'aide de vkAllocateMemory et de lier le tampon à la mémoire à l'aide de vkBindBufferMemory.

// CODELAB: hellovk.h
struct UniformBufferObject {
  std::array<float, 16> mvp;
};

void HelloVK::createUniformBuffers() {
  VkDeviceSize bufferSize = sizeof(UniformBufferObject);

  uniformBuffers.resize(MAX_FRAMES_IN_FLIGHT);
  uniformBuffersMemory.resize(MAX_FRAMES_IN_FLIGHT);

  for (size_t i = 0; i < MAX_FRAMES_IN_FLIGHT; i++) {
    createBuffer(bufferSize, VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
                 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
                     VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
                 uniformBuffers[i], uniformBuffersMemory[i]);
  }
}
// CODELAB: hellovk.h
void HelloVK::createBuffer(VkDeviceSize size, VkBufferUsageFlags usage,
                           VkMemoryPropertyFlags properties, VkBuffer &buffer,
                           VkDeviceMemory &bufferMemory) {
  VkBufferCreateInfo bufferInfo{};
  bufferInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
  bufferInfo.size = size;
  bufferInfo.usage = usage;
  bufferInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;

  VK_CHECK(vkCreateBuffer(device, &bufferInfo, nullptr, &buffer));

  VkMemoryRequirements memRequirements;
  vkGetBufferMemoryRequirements(device, buffer, &memRequirements);

  VkMemoryAllocateInfo allocInfo{};
  allocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
  allocInfo.allocationSize = memRequirements.size;
  allocInfo.memoryTypeIndex =
      findMemoryType(memRequirements.memoryTypeBits, properties);

  VK_CHECK(vkAllocateMemory(device, &allocInfo, nullptr, &bufferMemory));

  vkBindBufferMemory(device, buffer, bufferMemory, 0);
}

Fonction d'assistance pour trouver le bon type de mémoire.

// CODELAB: hellovk.h
/*
 * Finds the index of the memory heap which matches a particular buffer's memory
 * requirements. Vulkan manages these requirements as a bitset, in this case
 * expressed through a uint32_t.
 */
uint32_t HelloVK::findMemoryType(uint32_t typeFilter,
                                 VkMemoryPropertyFlags properties) {
  VkPhysicalDeviceMemoryProperties memProperties;
  vkGetPhysicalDeviceMemoryProperties(physicalDevice, &memProperties);

  for (uint32_t i = 0; i < memProperties.memoryTypeCount; i++) {
    if ((typeFilter & (1 << i)) && (memProperties.memoryTypes[i].propertyFlags &
                                    properties) == properties) {
      return i;
    }
  }

  assert(false);  // failed to find a suitable memory type!
  return -1;
}

À la fin de cette étape, vous ne verrez qu'une fenêtre noire sans aucun rendu, car vous êtes encore en plein processus de configuration. En cas de problème, vous pouvez comparer votre travail avec le commit du dépôt intitulé [codelab] step: descriptorset and uniform buffer.

8. Tampons de commande : créer, enregistrer et dessiner

VkCommandPool est un objet simple utilisé pour allouer CommandBuffers. Il est connecté à une famille de file d'attente précise.

VkCommandBuffer est un objet Vulkan qui représente une liste de commandes que le GPU exécutera. Il s'agit d'un objet de bas niveau qui permet de contrôler finement le GPU.

// CODELAB: hellovk.h
void HelloVK::createCommandPool() {
  QueueFamilyIndices queueFamilyIndices = findQueueFamilies(physicalDevice);
  VkCommandPoolCreateInfo poolInfo{};
  poolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
  poolInfo.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT;
  poolInfo.queueFamilyIndex = queueFamilyIndices.graphicsFamily.value();
  VK_CHECK(vkCreateCommandPool(device, &poolInfo, nullptr, &commandPool));
}
// CODELAB: hellovk.h
void HelloVK::createCommandBuffer() {
  commandBuffers.resize(MAX_FRAMES_IN_FLIGHT);
  VkCommandBufferAllocateInfo allocInfo{};
  allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
  allocInfo.commandPool = commandPool;
  allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
  allocInfo.commandBufferCount = commandBuffers.size();

  VK_CHECK(vkAllocateCommandBuffers(device, &allocInfo, commandBuffers.data()));
}

À la fin de cette étape, vous ne verrez qu'une fenêtre noire sans aucun rendu, car vous êtes encore en plein processus de configuration. En cas de problème, vous pouvez comparer votre travail avec le commit du dépôt intitulé [codelab] step: create command pool and command buffer.

Mettre à jour le tampon de variables uniformes, enregistrer le tampon de commande et dessiner

Les commandes dans Vulkan, comme les opérations de dessin et les transferts de mémoire, ne sont pas exécutées directement à l'aide d'appels de fonction. Au lieu de cela, toutes les opérations en attente sont enregistrées dans des objets de tampons de commande. L'avantage est que lorsque nous sommes prêts à dire à Vulkan ce que nous voulons faire, l'ensemble des commandes est envoyé et Vulkan peut ainsi traiter les commandes plus efficacement puisqu'elles sont toutes disponibles en même temps. En outre, cela permet à l'enregistrement des commandes de se faire en plusieurs fois si nécessaire.

Dans Vulkan, tout le rendu se fait à l'intérieur de RenderPasses. Dans notre exemple, le RenderPass effectuera le rendu dans le FrameBuffer que nous avons défini précédemment.

// CODELAB: hellovk.h
void HelloVK::recordCommandBuffer(VkCommandBuffer commandBuffer,
                                  uint32_t imageIndex) {
  VkCommandBufferBeginInfo beginInfo{};
  beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
  beginInfo.flags = 0;
  beginInfo.pInheritanceInfo = nullptr;

  VK_CHECK(vkBeginCommandBuffer(commandBuffer, &beginInfo));

  VkRenderPassBeginInfo renderPassInfo{};
  renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
  renderPassInfo.renderPass = renderPass;
  renderPassInfo.framebuffer = swapChainFramebuffers[imageIndex];
  renderPassInfo.renderArea.offset = {0, 0};
  renderPassInfo.renderArea.extent = swapChainExtent;

  VkViewport viewport{};
  viewport.width = (float)swapChainExtent.width;
  viewport.height = (float)swapChainExtent.height;
  viewport.minDepth = 0.0f;
  viewport.maxDepth = 1.0f;
  vkCmdSetViewport(commandBuffer, 0, 1, &viewport);

  VkRect2D scissor{};
  scissor.extent = swapChainExtent;
  vkCmdSetScissor(commandBuffer, 0, 1, &scissor);

  static float grey;
  grey += 0.005f;
  if (grey > 1.0f) {
    grey = 0.0f;
  }
  VkClearValue clearColor = {grey, grey, grey, 1.0f};

  renderPassInfo.clearValueCount = 1;
  renderPassInfo.pClearValues = &clearColor;
  vkCmdBeginRenderPass(commandBuffer, &renderPassInfo,
                       VK_SUBPASS_CONTENTS_INLINE);
  vkCmdBindPipeline(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS,
                    graphicsPipeline);
  vkCmdBindDescriptorSets(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS,
                          pipelineLayout, 0, 1, &descriptorSets[currentFrame],
                          0, nullptr);

  vkCmdDraw(commandBuffer, 3, 1, 0, 0);
  vkCmdEndRenderPass(commandBuffer);
  VK_CHECK(vkEndCommandBuffer(commandBuffer));
}

Il se peut que vous deviez également mettre à jour le tampon de variables uniformes, car nous utilisons la même matrice de transformation pour tous les vertices que nous allons afficher.

// CODELAB: hellovk.h
void HelloVK::updateUniformBuffer(uint32_t currentImage) {
  SwapChainSupportDetails swapChainSupport =
      querySwapChainSupport(physicalDevice);
  UniformBufferObject ubo{};
  getPrerotationMatrix(swapChainSupport.capabilities, pretransformFlag,
                       ubo.mvp);
  void *data;
  vkMapMemory(device, uniformBuffersMemory[currentImage], 0, sizeof(ubo), 0,
              &data);
  memcpy(data, &ubo, sizeof(ubo));
  vkUnmapMemory(device, uniformBuffersMemory[currentImage]);
}

L'heure du rendu a sonné ! Récupérez le tampon de commande que vous avez composé et envoyez-le vers la file d'attente.

// CODELAB: hellovk.h
void HelloVK::render() {
  if (orientationChanged) {
    onOrientationChange();
  }

  vkWaitForFences(device, 1, &inFlightFences[currentFrame], VK_TRUE,
                  UINT64_MAX);
  uint32_t imageIndex;
  VkResult result = vkAcquireNextImageKHR(
      device, swapChain, UINT64_MAX, imageAvailableSemaphores[currentFrame],
      VK_NULL_HANDLE, &imageIndex);
  if (result == VK_ERROR_OUT_OF_DATE_KHR) {
    recreateSwapChain();
    return;
  }
  assert(result == VK_SUCCESS ||
         result == VK_SUBOPTIMAL_KHR);  // failed to acquire swap chain image
  updateUniformBuffer(currentFrame);

  vkResetFences(device, 1, &inFlightFences[currentFrame]);
  vkResetCommandBuffer(commandBuffers[currentFrame], 0);

  recordCommandBuffer(commandBuffers[currentFrame], imageIndex);

  VkSubmitInfo submitInfo{};
  submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;

  VkSemaphore waitSemaphores[] = {imageAvailableSemaphores[currentFrame]};
  VkPipelineStageFlags waitStages[] = {
      VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT};
  submitInfo.waitSemaphoreCount = 1;
  submitInfo.pWaitSemaphores = waitSemaphores;
  submitInfo.pWaitDstStageMask = waitStages;
  submitInfo.commandBufferCount = 1;
  submitInfo.pCommandBuffers = &commandBuffers[currentFrame];
  VkSemaphore signalSemaphores[] = {renderFinishedSemaphores[currentFrame]};
  submitInfo.signalSemaphoreCount = 1;
  submitInfo.pSignalSemaphores = signalSemaphores;

  VK_CHECK(vkQueueSubmit(graphicsQueue, 1, &submitInfo,
                         inFlightFences[currentFrame]));

  VkPresentInfoKHR presentInfo{};
  presentInfo.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR;

  presentInfo.waitSemaphoreCount = 1;
  presentInfo.pWaitSemaphores = signalSemaphores;

  VkSwapchainKHR swapChains[] = {swapChain};
  presentInfo.swapchainCount = 1;
  presentInfo.pSwapchains = swapChains;
  presentInfo.pImageIndices = &imageIndex;
  presentInfo.pResults = nullptr;

  result = vkQueuePresentKHR(presentQueue, &presentInfo);
  if (result == VK_SUBOPTIMAL_KHR) {
    orientationChanged = true;
  } else if (result == VK_ERROR_OUT_OF_DATE_KHR) {
    recreateSwapChain();
  } else {
    assert(result == VK_SUCCESS);  // failed to present swap chain image!
  }
  currentFrame = (currentFrame + 1) % MAX_FRAMES_IN_FLIGHT;
}

Gérez le changement d'orientation en recréant la swap chain.

// CODELAB: hellovk.h
void HelloVK::onOrientationChange() {
  recreateSwapChain();
  orientationChanged = false;
}

Procédez à l'intégration dans le cycle de vie de l'application.

// CODELAB: vk_main.cpp
/**
 * Called by the Android runtime whenever events happen so the
 * app can react to it.
 */
static void HandleCmd(struct android_app *app, int32_t cmd) {
  auto *engine = (VulkanEngine *)app->userData;
  switch (cmd) {
    case APP_CMD_START:
      if (engine->app->window != nullptr) {
        engine->app_backend->reset(app->window, app->activity->assetManager);
        engine->app_backend->initVulkan();
        engine->canRender = true;
      }
    case APP_CMD_INIT_WINDOW:
      // The window is being shown, get it ready.
      LOGI("Called - APP_CMD_INIT_WINDOW");
      if (engine->app->window != nullptr) {
        LOGI("Setting a new surface");
        engine->app_backend->reset(app->window, app->activity->assetManager);
        if (!engine->app_backend->initialized) {
          LOGI("Starting application");
          engine->app_backend->initVulkan();
        }
        engine->canRender = true;
      }
      break;
    case APP_CMD_TERM_WINDOW:
      // The window is being hidden or closed, clean it up.
      engine->canRender = false;
      break;
    case APP_CMD_DESTROY:
      // The window is being hidden or closed, clean it up.
      LOGI("Destroying");
      engine->app_backend->cleanup();
    default:
      break;
  }
}

/*
 * Entry point required by the Android Glue library.
 * This can also be achieved more verbosely by manually declaring JNI functions
 * and calling them from the Android application layer.
 */
void android_main(struct android_app *state) {
  VulkanEngine engine{};
  vkt::HelloVK vulkanBackend{};

  engine.app = state;
  engine.app_backend = &vulkanBackend;
  state->userData = &engine;
  state->onAppCmd = HandleCmd;

  android_app_set_key_event_filter(state, VulkanKeyEventFilter);
  android_app_set_motion_event_filter(state, VulkanMotionEventFilter);

  while (true) {
    int ident;
    int events;
    android_poll_source *source;
    while ((ident = ALooper_pollAll(engine.canRender ? 0 : -1, nullptr, &events,
                                    (void **)&source)) >= 0) {
      if (source != nullptr) {
        source->process(state, source);
      }
    }

    HandleInputEvents(state);

    engine.app_backend->render();
  }
}

À la fin de cette étape, vous verrez enfin un triangle coloré sur l'écran !

b07da8354cdd1629.png

Vérifiez que c'est bien le cas, et si quelque chose ne va pas, vous pouvez comparer votre travail avec le commit du dépôt intitulé [codelab] step: update uniform buffer, record command buffer and draw.

9. Faire pivoter le triangle

Pour faire tourner le triangle, nous devons appliquer la rotation à notre matrice MVP avant de transmettre cette même matrice au nuanceur. Cela vise à éviter la duplication du travail de calcul de la même matrice pour chacun des vertices dans le modèle.

Pour calculer la matrice MVP du côté de l'application, une matrice de transformation de rotation est nécessaire. GLM Library est une bibliothèque mathématique C++ permettant d'écrire des logiciels graphiques basés sur les spécifications GLSL. Elle dispose également de la fonction rotate nécessaire pour créer la matrice de rotation.

// CODELAB: hellovk.h
// Additional includes to make our lives easier than composing
// transformation matrices manually
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/type_ptr.hpp>

// change our UniformBufferObject construct to use glm::mat4
struct UniformBufferObject {
  glm::mat4 mvp;
};
// CODELAB: hellovk.h
/*
 * getPrerotationMatrix handles screen rotation with 3 hardcoded rotation
 * matrices (detailed below). We skip the 180 degrees rotation.
 */
void getPrerotationMatrix(const VkSurfaceCapabilitiesKHR &capabilities,
                          const VkSurfaceTransformFlagBitsKHR &pretransformFlag,
                          glm::mat4 &mat, float ratio) {
  // mat is initialized to the identity matrix
  mat = glm::mat4(1.0f);

  // scale by screen ratio
  mat = glm::scale(mat, glm::vec3(1.0f, ratio, 1.0f));

  // rotate 1 degree every function call.
  static float currentAngleDegrees = 0.0f;
  currentAngleDegrees += 1.0f;
  if ( currentAngleDegrees >= 360.0f ) {
    currentAngleDegrees = 0.0f;
  }

  mat = glm::rotate(mat, glm::radians(currentAngleDegrees), glm::vec3(0.0f, 0.0f, 1.0f));
}

À la fin de cette étape, vous verrez que votre triangle pivote à l'écran ! Vérifiez que c'est bien le cas, et si quelque chose ne va pas, vous pouvez comparer votre travail avec le commit du dépôt intitulé [codelab] step: rotate triangle.

10. Texturer

Pour texturer le triangle, le fichier image doit d'abord être chargé en mémoire dans un format non compressé. Cette étape utilise la bibliothèque stb image pour charger et décoder les données de l'image dans la RAM, qui sont ensuite copiées dans le tampon de Vulkan (VkBuffer).

// CODELAB: hellovk.h
void HelloVK::decodeImage() {
  std::vector<uint8_t> imageData = LoadBinaryFileToVector("texture.png",
                                                          assetManager);
  if (imageData.size() == 0) {
      LOGE("Fail to load image.");
      return;
  }

  unsigned char* decodedData = stbi_load_from_memory(imageData.data(),
      imageData.size(), &textureWidth, &textureHeight, &textureChannels, 0);
  if (decodedData == nullptr) {
      LOGE("Fail to load image to memory, %s", stbi_failure_reason());
      return;
  }

  size_t imageSize = textureWidth * textureHeight * textureChannels;

  VkBufferCreateInfo createInfo{};
  createInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
  createInfo.size = imageSize;
  createInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
  createInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
  VK_CHECK(vkCreateBuffer(device, &createInfo, nullptr, &stagingBuffer));

  VkMemoryRequirements memRequirements;
  vkGetBufferMemoryRequirements(device, stagingBuffer, &memRequirements);

  VkMemoryAllocateInfo allocInfo{};
  allocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
  allocInfo.allocationSize = memRequirements.size;
  allocInfo.memoryTypeIndex = findMemoryType(memRequirements.memoryTypeBits,
      VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);

  VK_CHECK(vkAllocateMemory(device, &allocInfo, nullptr, &stagingMemory));
  VK_CHECK(vkBindBufferMemory(device, stagingBuffer, stagingMemory, 0));

  uint8_t *data;
  VK_CHECK(vkMapMemory(device, stagingMemory, 0, memRequirements.size, 0,
                       (void **)&data));
  memcpy(data, decodedData, imageSize);
  vkUnmapMemory(device, stagingMemory);

  stbi_image_free(decodedData);
}

Ensuite, créez VkImage à partir du VkBuffer contenant les données d'image de l'étape précédente.

VkImage est l'objet qui contient les données de texture. Il contient les données des pixels dans la mémoire principale de la texture, mais ne contient pas beaucoup d'informations sur la façon de les lire. C'est pourquoi nous devrons créer VkImageView dans la section suivante.

// CODELAB: hellovk.h
void HelloVK::createTextureImage() {
  VkImageCreateInfo imageInfo{};
  imageInfo.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
  imageInfo.imageType = VK_IMAGE_TYPE_2D;
  imageInfo.extent.width = textureWidth;
  imageInfo.extent.height = textureHeight;
  imageInfo.extent.depth = 1;
  imageInfo.mipLevels = 1;
  imageInfo.arrayLayers = 1;
  imageInfo.format = VK_FORMAT_R8G8B8_UNORM;
  imageInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
  imageInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
  imageInfo.usage =
      VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
  imageInfo.samples = VK_SAMPLE_COUNT_1_BIT;
  imageInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;

  VK_CHECK(vkCreateImage(device, &imageInfo, nullptr, &textureImage));

  VkMemoryRequirements memRequirements;
  vkGetImageMemoryRequirements(device, textureImage, &memRequirements);

  VkMemoryAllocateInfo allocInfo{};
  allocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
  allocInfo.allocationSize = memRequirements.size;
  allocInfo.memoryTypeIndex = findMemoryType(memRequirements.memoryTypeBits,
                                          VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);

  VK_CHECK(vkAllocateMemory(device, &allocInfo, nullptr, &textureImageMemory));

  vkBindImageMemory(device, textureImage, textureImageMemory, 0);
}
// CODELAB: hellovk.h
void HelloVK::copyBufferToImage() {
  VkImageSubresourceRange subresourceRange{};
  subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
  subresourceRange.baseMipLevel = 0;
  subresourceRange.levelCount = 1;
  subresourceRange.layerCount = 1;

  VkImageMemoryBarrier imageMemoryBarrier{};
  imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
  imageMemoryBarrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
  imageMemoryBarrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
  imageMemoryBarrier.image = textureImage;
  imageMemoryBarrier.subresourceRange = subresourceRange;
  imageMemoryBarrier.srcAccessMask = 0;
  imageMemoryBarrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
  imageMemoryBarrier.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED;
  imageMemoryBarrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;

  VkCommandBuffer cmd;
  VkCommandBufferAllocateInfo cmdAllocInfo{};
  cmdAllocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
  cmdAllocInfo.commandPool = commandPool;
  cmdAllocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
  cmdAllocInfo.commandBufferCount = 1;

  VK_CHECK(vkAllocateCommandBuffers(device, &cmdAllocInfo, &cmd));

  VkCommandBufferBeginInfo beginInfo{};
  beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
  vkBeginCommandBuffer(cmd, &beginInfo);

  vkCmdPipelineBarrier(cmd, VK_PIPELINE_STAGE_HOST_BIT,
                       VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0, nullptr, 0,
                       nullptr, 1, &imageMemoryBarrier);

  VkBufferImageCopy bufferImageCopy{};
  bufferImageCopy.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
  bufferImageCopy.imageSubresource.mipLevel = 0;
  bufferImageCopy.imageSubresource.baseArrayLayer = 0;
  bufferImageCopy.imageSubresource.layerCount = 1;
  bufferImageCopy.imageExtent.width = textureWidth;
  bufferImageCopy.imageExtent.height = textureHeight;
  bufferImageCopy.imageExtent.depth = 1;
  bufferImageCopy.bufferOffset = 0;

  vkCmdCopyBufferToImage(cmd, stagingBuffer, textureImage,
                         VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
                         1, &bufferImageCopy);

  imageMemoryBarrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
  imageMemoryBarrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
  imageMemoryBarrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
  imageMemoryBarrier.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;

  vkCmdPipelineBarrier(cmd, VK_PIPELINE_STAGE_TRANSFER_BIT,
                       VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, 0, 0, nullptr,
                       0, nullptr, 1, &imageMemoryBarrier);

  vkEndCommandBuffer(cmd);

  VkSubmitInfo submitInfo{};
  submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
  submitInfo.commandBufferCount = 1;
  submitInfo.pCommandBuffers = &cmd;

  VK_CHECK(vkQueueSubmit(graphicsQueue, 1, &submitInfo, VK_NULL_HANDLE));
  vkQueueWaitIdle(graphicsQueue);
}

Créez donc VkImageView et VkSampler, qui peuvent être utilisés par le nuanceur de fragment pour échantillonner la couleur de chacun des pixels rendus.

VkImageView encapsule l'objet VkImage. Il contient des informations sur la manière d'interpréter les données de la texture. Par exemple, si vous souhaitez accéder uniquement à une région ou à une couche, et si vous voulez mélanger les canaux de pixels d'une manière spécifique.

VkSampler contient les données pour l'accès du nuanceur spécifique à la texture. Il contient des informations sur le mélange les pixels, ou sur le mipmapping. Les échantillonneurs sont utilisés avec les VkImageViews dans les descripteurs.

// CODELAB: hellovk.h
void HelloVK::createTextureImageViews() {
  VkImageViewCreateInfo createInfo{};
  createInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
  createInfo.image = textureImage;
  createInfo.viewType = VK_IMAGE_VIEW_TYPE_2D;
  createInfo.format = VK_FORMAT_R8G8B8_UNORM;
  createInfo.components.r = VK_COMPONENT_SWIZZLE_IDENTITY;
  createInfo.components.g = VK_COMPONENT_SWIZZLE_IDENTITY;
  createInfo.components.b = VK_COMPONENT_SWIZZLE_IDENTITY;
  createInfo.components.a = VK_COMPONENT_SWIZZLE_IDENTITY;
  createInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
  createInfo.subresourceRange.baseMipLevel = 0;
  createInfo.subresourceRange.levelCount = 1;
  createInfo.subresourceRange.baseArrayLayer = 0;
  createInfo.subresourceRange.layerCount = 1;

  VK_CHECK(vkCreateImageView(device, &createInfo, nullptr, &textureImageView));
}

Nous devrons également créer un échantillonneur à transmettre à notre nuanceur.

// CODELAB: hellovk.h
void HelloVK::createTextureSampler() {
  VkSamplerCreateInfo createInfo{};
  createInfo.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO;
  createInfo.magFilter = VK_FILTER_LINEAR;
  createInfo.minFilter = VK_FILTER_LINEAR;
  createInfo.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT;
  createInfo.addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT;
  createInfo.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT;
  createInfo.anisotropyEnable = VK_FALSE;
  createInfo.maxAnisotropy = 16;
  createInfo.borderColor = VK_BORDER_COLOR_INT_OPAQUE_BLACK;
  createInfo.unnormalizedCoordinates = VK_FALSE;
  createInfo.compareEnable = VK_FALSE;
  createInfo.compareOp = VK_COMPARE_OP_ALWAYS;
  createInfo.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
  createInfo.mipLodBias = 0.0f;
  createInfo.minLod = 0.0f;
  createInfo.maxLod = VK_LOD_CLAMP_NONE;

  VK_CHECK(vkCreateSampler(device, &createInfo, nullptr, &textureSampler));
}

Enfin, nous modifions nos nuanceurs pour échantillonner l'image au lieu d'utiliser la couleur du vertex. Les coordonnées de texture sont des positions en virgule flottante qui associent des emplacements sur une texture à des emplacements sur une surface géométrique. Dans notre exemple, ce processus se fait en définissant les vTexCoords en tant que sortie du nuanceur de vertex que nous remplissons avec les texCoords du vertex directement puisque nous avons un triangle normalisé (de taille {1, 1}).

// CODELAB: shader.vert
#version 450

// Uniform buffer containing an MVP matrix.
// Currently the vulkan backend only sets the rotation matrix
// required to handle device rotation.
layout(binding = 0) uniform UniformBufferObject {
    mat4 MVP;
} ubo;

vec2 positions[3] = vec2[](
    vec2(0.0, 0.577),
    vec2(-0.5, -0.289),
    vec2(0.5, -0.289)
);

vec2 texCoords[3] = vec2[](
    vec2(0.5, 1.0),
    vec2(0.0, 0.0),
    vec2(1.0, 0.0)
);

layout(location = 0) out vec2 vTexCoords;

void main() {
    gl_Position = ubo.MVP * vec4(positions[gl_VertexIndex], 0.0, 1.0);
    vTexCoords = texCoords[gl_VertexIndex];
}

Nuanceur de fragment utilisant l'échantillonneur et les textures.

// CODELAB: shader.frag
#version 450

layout(location = 0) in vec2 vTexCoords;

layout(binding = 1) uniform sampler2D samp;

// Output colour for the fragment
layout(location = 0) out vec4 outColor;

void main() {
    outColor = texture(samp, vTexCoords);
}

À la fin de cette étape, vous verrez que votre triangle en rotation est texturé !

b3426db4d6e94e89.gif

Vérifiez que c'est bien le cas, et si quelque chose ne va pas, vous pouvez comparer votre travail avec le commit du dépôt intitulé [codelab] step: apply texture.

11. Ajouter une couche de validation

Les couches de validation sont des composants optionnels qui s'associent aux appels de fonction Vulkan pour appliquer des opérations supplémentaires telles que :

  1. La validation des valeurs des paramètres pour détecter de mauvaises utilisations
  2. Le suivi de la création et de la destruction d'objets pour détecter les fuites de ressources
  3. La vérification de la sécurité des threads
  4. La journalisation des appels pour les analyser ou les relancer

Le téléchargement de la couche de validation étant conséquent, nous avons choisi de ne pas l'inclure dans l'APK. Ainsi, pour activer la couche de validation, veuillez suivre les quelques étapes ci-dessous :

Téléchargez les derniers binaires Android sur la page suivante : https://github.com/KhronosGroup/Vulkan-ValidationLayers/releases.

Placez-les dans leurs dossiers ABI respectifs situés dans : app/src/main/jniLibs

Suivez les étapes ci-dessous pour activer les couches de validation.

// CODELAB: hellovk.h
void HelloVK::createInstance() {
  assert(!enableValidationLayers ||
         checkValidationLayerSupport());  // validation layers requested, but not available!
  auto requiredExtensions = getRequiredExtensions(enableValidationLayers);

  VkApplicationInfo appInfo{};
  appInfo.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO;
  appInfo.pApplicationName = "Hello Triangle";
  appInfo.applicationVersion = VK_MAKE_VERSION(1, 0, 0);
  appInfo.pEngineName = "No Engine";
  appInfo.engineVersion = VK_MAKE_VERSION(1, 0, 0);
  appInfo.apiVersion = VK_API_VERSION_1_0;

  VkInstanceCreateInfo createInfo{};
  createInfo.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
  createInfo.pApplicationInfo = &appInfo;
  createInfo.enabledExtensionCount = (uint32_t)requiredExtensions.size();
  createInfo.ppEnabledExtensionNames = requiredExtensions.data();
  createInfo.pApplicationInfo = &appInfo;

  if (enableValidationLayers) {
    VkDebugUtilsMessengerCreateInfoEXT debugCreateInfo{};
    createInfo.enabledLayerCount =
        static_cast<uint32_t>(validationLayers.size());
    createInfo.ppEnabledLayerNames = validationLayers.data();
    populateDebugMessengerCreateInfo(debugCreateInfo);
    createInfo.pNext = (VkDebugUtilsMessengerCreateInfoEXT *)&debugCreateInfo;
  } else {
    createInfo.enabledLayerCount = 0;
    createInfo.pNext = nullptr;
  }

  VK_CHECK(vkCreateInstance(&createInfo, nullptr, &instance));

  uint32_t extensionCount = 0;
  vkEnumerateInstanceExtensionProperties(nullptr, &extensionCount, nullptr);
  std::vector<VkExtensionProperties> extensions(extensionCount);
  vkEnumerateInstanceExtensionProperties(nullptr, &extensionCount,
                                         extensions.data());
  LOGI("available extensions");
  for (const auto &extension : extensions) {
    LOGI("\t %s", extension.extensionName);
  }
}

12. Félicitations

Félicitations, vous avez réussi à configurer votre pipeline de rendu Vulkan, vous pouvez maintenant développer votre jeu !

Nous ajouterons d'autres fonctionnalités Vulkan à Android. Ne les manquez pas.

Pour plus d'informations sur l'utilisation de Vulkan sur Android, consultez la page Premiers pas avec Vulkan sur Android.